Autonomic control after blockade of the norepinephrine transporter: a model of orthostatic intolerance

2002 ◽  
Vol 93 (6) ◽  
pp. 2192-2198 ◽  
Author(s):  
Robert P. Carson ◽  
André Diedrich ◽  
David Robertson

Orthostatic intolerance is a debilitating syndrome characterized by tachycardia on assumption of upright posture. The norepinephrine (NE) transporter (NET) has been implicated in a genetic form of the disorder. We assessed the combined central and peripheral effects of pharmacological NET blockade on cardiovascular regulation and baroreflex sensitivity in rats. NE reuptake was blocked chronically in female Sprague-Dawley rats by the NET antagonist desipramine (DMI). Treated animals demonstrated an elevated supine heart rate, reduced tyramine responsiveness, and a reduced plasma ratio of the intraneuronal NE metabolite dihydroxyphenylglycol relative to NE, all of which are consistent with observations in human NET deficiency. Spectral analysis revealed a dramatic decrease in low-frequency spectral power after DMI that was consistent with decreased sympathetic outflow. Stimulation of the baroreflex with the vasodilator nitroprusside revealed an attenuated tachycardia in DMI-treated animals. This indicated that the DMI-induced sympathoinhibitory effects of increased NE in the brain stem predominates over the functional elevation of NE stimulation of peripheral targets. Thus attenuated baroreflex function and reduced sympathetic outflow may contribute to the orthostatic intolerance of severe NET deficiency.

1976 ◽  
Vol 38 (3_suppl) ◽  
pp. 1083-1092 ◽  
Author(s):  
John H. Vincent ◽  
Irmingard I. Lenzer

The effects of DOM (2, 5-dimethoxy-4-methylamphetamine) on behavior reinforced by electrical stimulation of the brain were observed in five male Sprague-Dawley rats. The animals were trained on a successive discrimination task: the SD interval lasted as long as it took the animal to make one lever-press; the SΔ interval was variable, with a mean duration of 60 sec. Following DOM administration, response latencies to the SD were longer during the first 75 min. and SΔ responding was augmented over the 2-hr. session. Gross behavioral effects such as hypokinesia and ataxia were observed for a large part of the session. While increased response latencies may be attributed to hypokinesia and ataxia, increases in SΔ responding reflect a breakdown of discrimination itself. Severe behavioral depression was not observed, suggesting that electrical stimulation of the brain may have counteracted the depressive effect of the amphetamine.


2008 ◽  
Vol 29 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Shuang Wang ◽  
Deng-chang Wu ◽  
Mei-ping Ding ◽  
Qing Li ◽  
Zhen-bing Zhuge ◽  
...  

1978 ◽  
Vol 42 (3) ◽  
pp. 1007-1016 ◽  
Author(s):  
Sharon N. Schnare ◽  
Irmingard I. Lenzer

The effects of sodium phenobarbital on (a) behavior reinforced by electrical stimulation of the brain, (b) behavioral seizures, and (c) EEG seizure activity were observed in seven male Sprague-Dawley rats. Rate of response on placebo day, over a 30-min. continuous reinforcement session, was compared to rate of response on drug day; an increase in response on the drug day over the placebo day was called a positive phenobarbital effect and a decrease a negative phenobarbital effect. For some animals the positive phenobarbital effect disappeared when the animal's rate of response was calculated for seizure-free time, i.e., when the time spent in seizure was subtracted from the 30-min. period. For other animals, however, the phenobarbital effect, whether positive or negative, was not directly related to time gained on the drug day compared to the placebo day. A new concept was advanced, that of seizure-proneness, measured by the number and duration of seizures and spike after-discharges. Significant correlations were found for seizure-proneness and phenobarbital effect.


Author(s):  
Shams M. Ghoneim ◽  
Frank M. Faraci ◽  
Gary L. Baumbach

The area postrema is a circumventricular organ in the brain stem and is one of the regions in the brain that lacks a fully functional blood-brain barrier. Recently, we found that disruption of the microcirculation during acute hypertension is greater in area postrema than in the adjacent brain stem. In contrast, hyperosmolar disruption of the microcirculation is greater in brain stem. The objective of this study was to compare ultrastructural characteristics of the microcirculation in area postrema and adjacent brain stem.We studied 5 Sprague-Dawley rats. Horseradish peroxidase was injected intravenously and allowed to circulate for 1, 5 or 15 minutes. Following perfusion of the upper body with 2.25% glutaraldehyde in 0.1 M sodium cacodylate, the brain stem was removed, embedded in agar, and chopped into 50-70 μm sections with a TC-Sorvall tissue chopper. Sections of brain stem were incubated for 1 hour in a solution of 3,3' diaminobenzidine tetrahydrochloride (0.05%) in 0.05M Tris buffer with 1% H2O2.


2021 ◽  
Vol 12 (2) ◽  
pp. 1272-1275
Author(s):  
Angu Bala Ganesh K S V ◽  
Sujeet Shekhar Sinha ◽  
Kesavi Durairaj ◽  
Abdul Sahabudeen K

Naphthalene is a bicyclic aromatic constituent commonly used in different domestic and marketable applications comprising soil fumigants, lavatory scent disks and mothballs. Accidentally, workers, children and animals are exposed to naphthalene mothballs, so there is a need to study the pathology behind this chemical toxicity. The current study was carried out to assess the ultra structural changes of basolateral amygdaloid nuclei in the Sprague Dawley rats brain in association to naphthalene toxicity. The toxicity model group was administered with naphthalene (200 and 400mg) using corn oil as a vehicle for 28 days. The post delayed toxicity of naphthalene high dose ingestion was also assessed in rats. After the experimental period, the brain tissue was processed to observe the ultra structural changes using a transmission electron microscope. The alterations in cell organelles, nuclei damage, mitochondrial swelling, chromatin condensation suggested naphthalene induced damage in the neurons of the basolateral amygdala of the brain in the toxicity model group. These experimental trials provide information about the alert of mothball usage in the home and identify risks linked with accidental exposure and misuse.


Author(s):  
Min Hu ◽  
Fan Du ◽  
Shi Liu

The purpose of this study was to investigate the effects of electroacupuncture at Zusanli acupoint on the enteric neuropathy in diabetic rats. Sprague–Dawley rats were divided into different groups depending on the total electroacupuncture span and frequency. The expression of nitric oxide synthase (nNOS), choline acetyltransferase (CHAT), protein gene product 9.5 (PGP9.5), and doublecortin was significantly decreased in the diabetic group compared with the control group. Long-term electroacupuncture at Zusanli with either high frequency or low frequency could increase the expression levels of nNOS, CHAT, PGP9.5, and doublecortin, and the increase was greater in the high-frequency group. But no obvious changes were seen in the short-term electroacupuncture groups. These results suggest that electroacupuncture at Zusanli can restore the deficiency of enteric neurons in diabetes partly but a comparative long duration of stimuli (6 weeks) is required. The increase of doublecortin may be involved in this positive process.


1991 ◽  
Vol 261 (1) ◽  
pp. G104-G110
Author(s):  
L. E. Hierlihy ◽  
J. L. Wallace ◽  
A. V. Ferguson

The role of the vagus nerve in the development of gastric mucosal damage was examined in urethan-anesthetized male Sprague-Dawley rats. Electrical stimulation was applied to the vagus nerves for a period of 60 min, after which macroscopic gastric damage was scored and samples of the stomach were fixed for later histological assessment. Damage scores were assigned blindly based on a 0 (normal) to 3 (severe) scale. Stimulation of vagal afferents or efferents in isolation did not result in significant damage to the gastric mucosa (P greater than 0.1). In contrast, stimulation of both intact vagus nerves resulted in significant gastric mucosal damage (mean damage score, 2.0 +/- 0.33, P less than 0.01). A second series of experiments demonstrated this gastric damage to be induced within 30-60 min; extending the stimulation period to 120 min did not worsen the gastric damage scores significantly (P greater than 0.1). In a third study, stimulation of both intact vagus nerves after paraventricular nucleus (PVN) lesion resulted in damage scores (0.33 +/- 0.17) that were significantly reduced compared with intact PVN and non-PVN-lesioned animals (P less than 0.01). These results indicate that the development of vagal stimulation-induced gastric damage requires the activation of both afferent and efferent vagal components and suggest further that such damage is dependent upon an intact PVN.


1997 ◽  
Vol 272 (1) ◽  
pp. G100-G105 ◽  
Author(s):  
A. Rodriguez-Membrilla ◽  
P. Vergara

A meal disrupts migrating motor complexes (MMC) in the rat intestine through stimulation of peripheral cholecystokinin (CCK)-B and central CCK-A receptors. The aim of this study was to determine pathways implicated in postprandial disruption of the MMC mediated by CCK. Sprague-Dawley rats were prepared with electrodes for electromyography in the small intestine, and ablation of vagal afferent C-fibers by capsaicin was carried out. Endogenous release of CCK was induced by oral administration of soybean trypsin inhibitor (SBTI). In control rats SBTI disrupted MMC and generated an irregular spiking activity that lasted longer than 3 h. Intravenous infusion of L-365,260 (2 x 10(-7) mol/kg) but not of L-364,718 (3 x 10(-9) mol/kg) restored the MMC pattern. In capsaicin-treated rats, SBTI did not modify fasting activity. Infusion of CCK octapeptide (CCK-8) at 3 x 10(-9) mol.kg-1.h-1 disrupted the MMC, although the response was quantitatively and qualitatively different from SBTI. The effect was reversed by intravenous infusion of L-364,718 or L-365,260 and intracerebroventricular infusion of L-364,718. In capsaicin-treated rats, the intracerebroventricular or intravenous infusion of L-364,718 inhibited CCK-8 effects. However, the intravenous infusion of L-365,260 did not reverse the MMC pattern. These results suggest that the disruption of the MMC mediated by CCK is due to stimulation of peripheral CCK-B receptors located in vagal afferent fibers. This initiates a reflex including stimulation of central CCK-A receptors. Exogenous CCK also stimulates peripheral CCK-A receptors not located in capsaicin-sensitive vagal afferent fibers.


Sign in / Sign up

Export Citation Format

Share Document