Chronic intermittent hypoxia enhances ventilatory long-term facilitation in awake rats

2003 ◽  
Vol 95 (4) ◽  
pp. 1499-1508 ◽  
Author(s):  
Michelle McGuire ◽  
Yi Zhang ◽  
David P. White ◽  
Liming Ling

This study examined the effect of chronic intermittent hypoxia (CIH: 5 min 11-12% O2/5 min air, 12 h/night, 7 nights) on ventilatory long-term facilitation (LTF) and determined the persistence period of this CIH effect in awake rats. LTF, elicited by 5 or 10 episodes of 5 min 12% O2, was measured four times in the same Sprague-Dawley rats by plethysmography, before and 8 h, 3 days, and 7 days after CIH treatment. Resting ventilation was unchanged after CIH. Five episodes of 12% O2 did not initially elicit LTF but elicited LTF (23.5 ± 1.4% above baseline) 8 h after CIH, which partially remained at 3 days (11.4 ± 2.2%, P < 0.05) and disappeared at 7 days. Ten episodes initially elicited LTF (17.7 ± 1.1%, 45-min duration) and elicited an enhanced LTF (29.1 ± 1.5%, 75 min) 8 h after CIH. These results demonstrated that CIH enhanced ventilatory LTF in conscious, freely behaving rats in two ways: 1) a previously ineffective protocol induced LTF; and 2) LTF magnitude was increased and LTF duration prolonged, and this CIH effect on LTF persisted for at least 3 days.

2001 ◽  
Vol 91 (2) ◽  
pp. 709-716 ◽  
Author(s):  
E. B. Olson ◽  
C. J. Bohne ◽  
M. R. Dwinell ◽  
A. Podolsky ◽  
E. H. Vidruk ◽  
...  

We tested the hypothesis that unanesthetized rats exhibit ventilatory long-term facilitation (LTF) after intermittent, but not continuous, hypoxia. Minute ventilation (V˙e) and carbon dioxide production (V˙co 2) were measured in unanesthetized, unrestrained male Sprague-Dawley rats via barometric plethysmography before, during, and after exposure to continuous or intermittent hypoxia. Hypoxia was either isocapnic [inspired O2 fraction (Fi O2 ) = 0.08–0.09 and inspired CO2 fraction (Fi CO2 ) = 0.04] or poikilocapnic (Fi O2 = 0.11 and Fi CO2 = 0.00). Sixty minutes after intermittent hypoxia, V˙e orV˙e/V˙co 2 was significantly greater than baseline in both isocapnic and poikilocapnic conditions. In contrast, 60 min after continuous hypoxia,V˙e andV˙e/V˙co 2 were not significantly different from baseline values. These data demonstrate ventilatory LTF after intermittent hypoxia in unanesthetized rats. Ventilatory LTF appeared similar in its magnitude (after accounting for CO2 feedback), time course, and dependence on intermittent hypoxia to phrenic LTF previously observed in anesthetized, vagotomized, paralyzed rats.


2002 ◽  
Vol 93 (6) ◽  
pp. 2155-2161 ◽  
Author(s):  
Michelle McGuire ◽  
Yi Zhang ◽  
David P. White ◽  
Liming Ling

Episodic hypoxia induces a persistent augmentation of respiratory activity, termed long-term facilitation (LTF). Phrenic LTF saturates in anesthetized animals such that additional episodes of stimulation cause no further increase in LTF magnitude. The present study tested the hypothesis that 1) ventilatory LTF also saturates in awake rats and 2) more severe hypoxia and hypoxic episodes increase the effectiveness of eliciting ventilatory LTF. Minute ventilation was measured in awake, male Sprague-Dawley rats by plethysmography. LTF was elicited by five episodes of 10% O2 poikilocapnic hypoxia (magnitude: 17.3 ± 2.8% above baseline, between 15 and 45 min posthypoxia, duration: 45 min) but not 12 or 8% O2. LTF was also elicited by 10, 20, and 72 episodes of 12% O2(19.1 ± 2.2, 18.9 ± 1.8, and 19.8 ± 1.6%; 45, 60, and 75 min, respectively) but not by three or five episodes. These results show that there is a certain range of hypoxia that induces ventilatory LTF and that additional hypoxic episodes may increase the duration but not the magnitude of this response.


2008 ◽  
Vol 105 (3) ◽  
pp. 942-950 ◽  
Author(s):  
Michelle McGuire ◽  
Chun Liu ◽  
Ying Cao ◽  
Liming Ling

N-methyl-d-aspartate (NMDA) receptor antagonism in the phrenic motonucleus area eliminates phrenic long-term facilitation (pLTF; a persistent augmentation of phrenic nerve activity after episodic hypoxia) in anesthetized rats. However, whether NMDA antagonism can eliminate ventilatory LTF (vLTF) in awake rats is unclear. The role of non-NMDA receptors in LTF is also unknown. Serotonin receptor antagonism before, but not after, episodic hypoxia eliminates pLTF, suggesting that serotonin receptors are required for induction, but not maintenance, of pLTF. However, because NMDA and non-NMDA ionotropic glutamate receptors are directly involved in mediating the inspiratory drive to phrenic, hypoglossal, and intercostal motoneurons, we hypothesized that these receptors are required for both formation and maintenance of vLTF. vLTF, induced by five episodes of 5-min poikilocapnic hypoxia (10% O2) with 5-min normoxia intervals, was measured with plethysmography in conscious adult male Sprague-Dawley rats. Either (±)-2-amino-5-phosphonovaleric acid (APV; NMDA antagonist, 1.5 mg/kg) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX; non-NMDA antagonist, 10 mg/kg) was systemically (ip) injected ∼30 min before hypoxia. APV was also injected immediately after or 20 min after episodic hypoxia in additional groups. As control, vehicle was similarly injected in each rat 1–2 days before. Regardless of being injected before or after episodic hypoxia, vehicle did not alter vLTF (∼23%), whereas APV eliminated vLTF while having little effect on baseline ventilation or hypoxic ventilatory response. In contrast, CNQX enhanced vLTF (∼34%) while decreasing baseline ventilation. Collectively, these results suggest that activation of NMDA but not non-NMDA receptors is necessary for formation and maintenance of vLTF in awake rats.


2003 ◽  
Vol 95 (6) ◽  
pp. 2614-2623 ◽  
Author(s):  
A. G. Zabka ◽  
G. S. Mitchell ◽  
E. B. Olson ◽  
M. Behan

Age and the estrus cycle affect time-dependent respiratory responses to episodic hypoxia in female rats. Respiratory long-term facilitation (LTF) is enhanced in middle-aged vs. young female rats ( 72 ). We tested the hypothesis that phrenic and hypoglossal (XII) LTF are diminished in acyclic geriatric rats when fluctuating sex hormone levels no longer establish conditions that enhance LTF. Chronic intermittent hypoxia (CIH) enhances LTF ( 41 ); thus we further predicted that CIH would restore LTF in geriatric female rats. LTF was measured in young (3-4 mo) and geriatric (20-22 mo) female Sasco Sprague-Dawley rats and in a group of geriatric rats exposed to 1 wk of nocturnal CIH (11 vs. 21% O2 at 5-min intervals, 12 h/night). In anesthetized, paralyzed, vagotomized, and ventilated rats, time-dependent hypoxic phrenic and XII responses were assessed. The short-term hypoxic response was measured during the first of three 5-min episodes of isocapnic hypoxia (arterial Po2 35-45 Torr). LTF was assessed 15, 30, and 60 min postepisodic hypoxia. Phrenic and XII short-term hypoxic response was not different among groups, regardless of CIH treatment ( P > 0.05). LTF in geriatric female rats was smaller than previously reported for middle-aged rats but comparable to that in young female rats. CIH augmented phrenic and XII LTF to levels similar to those of middle-aged female rats without CIH ( P < 0.05). The magnitude of phrenic and XII LTF in all groups was inversely related to the ratio of progesterone to estradiol serum levels ( P < 0.05). Thus CIH and sex hormones influence the magnitude of LTF in geriatric female rats.


2001 ◽  
Vol 90 (5) ◽  
pp. 2001-2006 ◽  
Author(s):  
D. D. Fuller ◽  
A. G. Zabka ◽  
T. L. Baker ◽  
G. S. Mitchell

Episodic hypoxia evokes a sustained augmentation of respiratory motor output known as long-term facilitation (LTF). Phrenic LTF is prevented by pretreatment with the 5-hydroxytryptamine (5-HT) receptor antagonist ketanserin. We tested the hypothesis that 5-HT receptor activation is necessary for the induction but not maintenance of phrenic LTF. Peak integrated phrenic nerve activity (∫Phr) was monitored for 1 h after three 5-min episodes of isocapnic hypoxia (arterial Po 2 = 40 ± 2 Torr; 5-min hyperoxic intervals) in four groups of anesthetized, vagotomized, paralyzed, and ventilated Sprague-Dawley rats [ 1) control ( n = 11), 2) ketanserin pretreatment (2 mg/kg iv; n = 7), and ketanserin treatment 0 and 45 min after episodic hypoxia ( n = 7 each)]. Ketanserin transiently decreased ∫Phr, but it returned to baseline levels within 10 min. One hour after episodic hypoxia, ∫Phr was significantly elevated from baseline in control and in the 0- and 45-min posthypoxia ketanserin groups. Conversely, ketanserin pretreatment abolished phrenic LTF. We conclude that 5-HT receptor activation is necessary to initiate (during hypoxia) but not maintain (following hypoxia) phrenic LTF.


2006 ◽  
Vol 100 (4) ◽  
pp. 1117-1123 ◽  
Author(s):  
Shane A. Phillips ◽  
E. B. Olson ◽  
Julian H. Lombard ◽  
Barbara J. Morgan

Although arterial dilator reactivity is severely impaired during exposure of animals to chronic intermittent hypoxia (CIH), few studies have characterized vasoconstrictor responsiveness in resistance arteries of this model of sleep-disordered breathing. Sprague-Dawley rats were exposed to CIH (10% inspired O2 fraction for 1 min at 4-min intervals; 12 h/day) for 14 days. Control rats were housed under normoxic conditions. Diameters of isolated gracilis muscle resistance arteries (GA; 120–150 μm) were measured by television microscopy before and during exposure to norepinephrine (NE) and angiotensin II (ANG II) and at various intraluminal pressures between 20 and 140 mmHg in normal and Ca2+-free physiological salt solution. There was no difference in the ability of GA to constrict in response to ANG II ( P = 0.42; not significant; 10−10–10−7 M). However, resting tone, myogenic activation, and vasoconstrictor responses to NE ( P < 0.001; 10−9–10−6 M) were reduced in CIH vs. controls. Treatment of rats with the superoxide scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (tempol; 1 mM) in the drinking water restored myogenic responses and NE-induced constrictions of CIH rats, suggesting that elevated superoxide production during exposure to CIH attenuates vasoconstrictor responsiveness to NE and myogenic activation in skeletal muscle resistance arteries. CIH also leads to an increased stiffness and reduced vessel wall distensibility that were not correctable with oral tempol treatment.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Ying Zou ◽  
Wei Wang ◽  
Xinshi Nie ◽  
Jian Kang

Obstructive sleep apnea (OSA) is characterized by the repetitive collapse of the upper airway and chronic intermittent hypoxia (CIH) during sleep. It has been reported that CIH can increase the EMG activity of genioglossus in rats, which may be related to the neuromuscular compensation of OSA patients. This study aimed to explore whether CIH could induce the long-term facilitation (LTF) of genioglossus corticomotor activity. 16 rats were divided into the air group (n=8) and the CIH group (n=8). The CIH group was exposed to hypoxia for 4 weeks; the air group was subjected to air under identical experimental conditions in parallel. Transcranial magnetic stimulation (TMS) was applied every ten minutes and lasted for 1 h/day on the 1st, 3rd, 7th, 14th, 21st, and 28th days of air/CIH exposure. Genioglossus EMG was also recorded at the same time. Compared with the air group, the CIH group showed decreased TMS latency from 10 to 60 minutes on the 7th, 14th, 21st, and 28th days. The increased TMS amplitude lasting for 60 minutes was only observed on the 21st day. Genioglossus EMG activity increased only on the 28th day of CIH. We concluded that CIH could induce LTF of genioglossus corticomotor activity in rats.


2017 ◽  
Vol 31 (S1) ◽  
Author(s):  
Elisa Janine Gonzalez‐Rothi ◽  
Raphael Rodrigues Perim ◽  
Arash Tadjalli ◽  
Alec K Simon ◽  
Marissa Ciesla ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document