Central command contributes to increased blood flow in the noncontracting muscle at the start of one-legged dynamic exercise in humans

2012 ◽  
Vol 112 (12) ◽  
pp. 1961-1974 ◽  
Author(s):  
Kei Ishii ◽  
Nan Liang ◽  
Anna Oue ◽  
Ai Hirasawa ◽  
Kohei Sato ◽  
...  

Whether neurogenic vasodilatation contributes to exercise hyperemia is still controversial. Blood flow to noncontracting muscle, however, is chiefly regulated by a neural mechanism. Although vasodilatation in the nonexercising limb was shown at the onset of exercise, it was unclear whether central command or muscle mechanoreflex is responsible for the vasodilatation. To clarify this, using voluntary one-legged cycling with the right leg in humans, we measured the relative changes in concentrations of oxygenated-hemoglobin (Oxy-Hb) of the noncontracting vastus lateralis (VL) muscle with near-infrared spectroscopy as an index of tissue blood flow and femoral blood flow to the nonexercising leg. Oxy-Hb in the noncontracting VL and femoral blood flow increased ( P < 0.05) at the start period of voluntary one-legged cycling without accompanying a rise in arterial blood pressure. In contrast, no increases in Oxy-Hb and femoral blood flow were detected at the start period of passive one-legged cycling, suggesting that muscle mechanoreflex cannot explain the initial vasodilatation of the noncontracting muscle during voluntary one-legged cycling. Motor imagery of the voluntary one-legged cycling increased Oxy-Hb of not only the right but also the left VL. Furthermore, an increase in Oxy-Hb of the contracting VL, which was observed at the start period of voluntary one-legged cycling, had the same time course and magnitude as the increase in Oxy-Hb of the noncontracting muscle. Thus it is concluded that the centrally induced vasodilator signal is equally transmitted to the bilateral VL muscles, not only during imagery of exercise but also at the start period of voluntary exercise in humans.

2016 ◽  
Vol 120 (12) ◽  
pp. 1424-1433 ◽  
Author(s):  
Kei Ishii ◽  
Kanji Matsukawa ◽  
Nan Liang ◽  
Kana Endo ◽  
Mitsuhiro Idesako ◽  
...  

The purpose of this study was to examine the role of central command, generated prior to arbitrary motor execution, in cardiovascular and muscle blood flow regulation during exercise. Thirty two subjects performed 30 s of two-legged cycling or 1 min of one-legged cycling (66 ± 4% and 35% of the maximal exercise intensity, respectively), which was started arbitrarily or abruptly by a verbal cue (arbitrary vs. cued start). We measured the cardiovascular variables during both exercises and the relative changes in oxygenated-hemoglobin concentration (Oxy-Hb) of noncontracting vastus lateralis muscles as index of tissue blood flow and femoral blood flow to nonexercising leg during one-legged cycling. Two-legged cycling with arbitrary start caused a decrease in total peripheral resistance (TPR), which was smaller during the exercise with cued start. The greater reduction of TPR with arbitrary start was also recognized at the beginning of one-legged cycling. Oxy-Hb of noncontracting muscle increased by 3.6 ± 1% ( P < 0.05) during one-legged cycling with arbitrary start, whereas such increase in Oxy-Hb was absent with cued start. The increases in femoral blood flow and vascular conductance of nonexercising leg were evident ( P < 0.05) at 10 s from the onset of one-legged cycling with arbitrary start, whereas those were smaller or absent with cued start. It is likely that when voluntary exercise is started arbitrarily, central command is generated prior to motor execution and then contributes to muscle vasodilatation at the beginning of exercise. Such centrally induced muscle vasodilatation may be weakened and/or masked in the case of exercise with cued start.


2018 ◽  
Vol 46 (12) ◽  
pp. 5237-5244
Author(s):  
Li-Cheng Xi ◽  
Hong-Yu Li ◽  
Ming Zhang ◽  
Si-Cheng Huang

Objective A rabbit model was used to evaluate the effects of bone-cemented hip arthroplasty on distal femoral blood flow and metabolism relative to that of the non-cemented contralateral leg. Methods The marrow cavity of the right hind femur was filled with bone cement. At each of the following time points, rabbits were randomly selected to receive an injection of one dose of 99mTc-methylene diphosphonate and then immediately scanned using a gamma camera: immediately postoperatively and at 4 and 8 weeks postoperatively. A BL-410 model biofunction experimental system was used to analyze the acquired images and determine the radioactive counts of each hind leg. Results The X-ray and photographic images of the right femoral bones confirmed successful filling of the marrow cavity with bone cement. The radioactive counts were significantly lower in the experimental than control legs at each time point. The ratio of the radioactive count of the experimental to control leg increased considerably at each time point, but each ratio was <1. Conclusion Blocking the proximal femoral medullary cavity with bone cement was associated with significant lowering of the blood circulation of the femur and marrow, decreasing the distal femoral blood flow and bone metabolic rate.


2007 ◽  
Vol 103 (5) ◽  
pp. 1583-1591 ◽  
Author(s):  
Beth A. Parker ◽  
Sandra L. Smithmyer ◽  
Justin A. Pelberg ◽  
Aaron D. Mishkin ◽  
Michael D. Herr ◽  
...  

Limb vascular conductance responses to pharmacological and nonexercise vasodilator stimuli are generally augmented in women compared with men. In the present investigation, we tested the hypothesis that exercise-induced vasodilator responses are also greater in women than men. Sixteen women and 15 men (20–30 yr) with similar fitness and activity levels performed graded quadriceps exercise (supine, single-leg knee extensions, 40 contractions/min) to maximal exertion. Active limb hemodynamics (left common femoral artery diameter and volumetric blood flow), heart rate (ECG), and beat-to-beat mean arterial blood pressure (MAP; radial artery tonometry) were measured during each 3-min workload (4.8 and 8 W/stage for women and men, respectively). The hyperemic response to exercise (slope of femoral blood flow vs. workload) was greater ( P < 0.01) in women as was femoral blood flow at workloads >15 W. The leg vasodilatory response to exercise (slope of calculated femoral vascular conductance vs. absolute workload) was also greater in women than in men ( P < 0.01) because of the sex difference in hyperemia and the women's lower MAP (∼10–15 mmHg) at all workloads ( P < 0.05). The femoral artery dilated to a significantly greater extent in the women (∼0.5 mm) than in the men (∼0.1 mm) across all submaximal workloads. At maximal exertion, femoral vascular conductance was lower in the men (men, 18.0 ± 0.6 ml·min−1·mmHg−1; women, 22.6 ± 1.4 ml·min−1·mmHg−1; P < 0.01). Collectively, these findings suggest that the vasodilatory response to dynamic leg exercise is greater in young women vs. men.


2007 ◽  
Vol 103 (4) ◽  
pp. 1311-1317 ◽  
Author(s):  
Guido Wassink ◽  
Laura Bennet ◽  
Lindsea C. Booth ◽  
Ellen C. Jensen ◽  
Bert Wibbens ◽  
...  

There is evidence that preterm fetuses have blunted chemoreflex-mediated responses to hypoxia. However, the preterm fetus has much lower aerobic requirements than at term, and so moderate hypoxia may not be sufficient to elicit maximal chemoreflex responses; there are only limited quantitative data on the ontogeny of chemoreflex and hemodynamic responses to severe asphyxia. Chronically instrumented fetal sheep at 0.6 ( n = 12), 0.7 ( n = 12), and 0.85 ( n = 8) of gestational age (GA; term = 147 days) were exposed to 30, 25, or 15 min of complete umbilical cord occlusion, respectively. At all ages, occlusion was associated with early onset of bradycardia, profoundly reduced femoral blood flow and conductance, and hypertension. The 0.6-GA fetuses showed a significantly slower and lesser fall in femoral blood flow and conductance compared with the 0.85-GA group, with a correspondingly reduced relative rise in mean arterial blood pressure. As occlusion continued, the initial adaptation was followed by loss of peripheral vasoconstriction and progressive development of hypotension in all groups. The 0.85-GA fetuses showed significantly more sustained reduction in femoral conductance but also more rapid onset of hypotension than either of the younger groups. Electroencephalographic (EEG) activity was suppressed during occlusion in all groups, but the degree of suppression was less at 0.6 GA than at term. In conclusion, the near-midgestation fetus shows attenuated initial (chemoreflex) peripheral vasomotor responses to severe asphyxia compared with more mature fetuses but more sustained hemodynamic adaptation and reduced suppression of EEG activity during continued occlusion of the umbilical cord.


2013 ◽  
Vol 304 (10) ◽  
pp. R799-R803 ◽  
Author(s):  
Lindsea C. Booth ◽  
Paul P. Drury ◽  
Cameron Muir ◽  
Ellen C. Jensen ◽  
Alistair J. Gunn ◽  
...  

There is increasing evidence that exposure to infection can sensitize the fetus to subsequent hypoxic injury. However, it is unclear whether this involves compromise of the fetal cardiovascular adaptation to acute asphyxia. Chronically instrumented 103-day-old (0.7 gestational age, term is 147 days) fetal sheep in utero were randomized to receive either gram-negative lipopolysaccharide (LPS) as a continuous low-dose infusion for 120 h plus boluses of 1 μg LPS at 48, 72, and 96 h with asphyxia at 102 h (i.e., 6 h after the final LPS bolus) induced by umbilical cord occlusion for 15 min (LPS treated, n = 8), or the same volume of saline plus occlusion (saline treated, n = 7). Fetuses were killed 5 days after occlusion. LPS was associated with a more rapid fall in fetal heart rate at the onset of occlusion ( P < 0.05) and with minimally lower values during occlusion ( P < 0.05). The LPS-treated fetuses had lower fetal mean arterial blood pressure (BP) and greater carotid artery blood flow (CaBF) before occlusion ( P < 0.05) but showed an increase in BP and fall in CaBF to similar values as saline controls during occlusion. There were no differences between the groups in femoral blood flow before or during occlusion. Contrary to our initial hypothesis, acute on chronic exposure to LPS was associated with more rapid cardiovascular adaptation to umbilical cord occlusion.


1972 ◽  
Vol 36 (6) ◽  
pp. 721-727 ◽  
Author(s):  
Norberto C. Gonzalez ◽  
John Overman ◽  
John A. Maxwell

✓ Anesthetized dogs were subjected to elevated intracranial pressure (ICP) of 60 and 100 mm Hg. At 60 mm Hg, decreases in heart rate and arterial blood pressure were observed associated with an increase in femoral blood flow that suggested vasodilation in the somatic areas. Cardiac output showed little change. Subsequent elevation of ICP to 100 mm Hg was followed by an increase in arterial blood pressure; cardiac output increased, and femoral flow increased still further. Since resistance to flow did not change, the hypertension was thought to be due to an increase in flow rather than peripheral resistance. An increase in heart rate was associated with the elevation in cardiac output; the fact that femoral blood flow increased proportionately more than cardiac output suggested a redistribution of blood flow. The changes in peripheral blood flow and in cardiac output were associated with a decrease in the arteriovenous oxygen (A–VO2) difference. No signs of tissue hypoxia were observed; specifically there was no significant change in the lactate-to-pyruvate ratio; the changes in A–VO2 difference were correlated with changes in flow and the product of the two variables, namely, oxygen consumption, remained unchanged. The data show that experimental elevation of ICP restricted to moderate levels is followed by hemodynamic changes suggesting peripheral vasodilation, and that when an increase in blood pressure then occurs, it is due to an increase in blood flow despite the decrease in peripheral resistance.


2021 ◽  
Vol 10 (12) ◽  
pp. 2558
Author(s):  
Mara Paneroni ◽  
Evasio Pasini ◽  
Michele Vitacca ◽  
Simonetta Scalvini ◽  
Laura Comini ◽  
...  

We evaluated vascular dysfunction with the single passive leg movement test (sPLM) in 22 frail elderly patients at 84 + 31 days after hospitalization for COVID-19 pneumonia, compared to 22 age-, sex- and comorbidity-matched controls (CTRL). At rest, all COVID-19 patients were in stable clinical condition without severe comorbidities. Patients (aged 72 ± 6 years, 73% male) had moderate disability (Barthel index score 77 ± 26), hypoxemia and normocapnia at arterial blood gas analysis and mild pulmonary restriction at spirometry. Values of circulating markers of inflammation (C-reactive protein: CRP; erythrocyte sedimentation rate: ESR) and coagulation (D-dimer) were: 27.13 ± 37.52 mg/dL, 64.24 ± 32.37 mm/1 h and 1043 ± 729 ng/mL, respectively. At rest, femoral artery diameter was similar in COVID-19 and CTRL (p = 0.16). On the contrary, COVID-19 infection deeply impacted blood velocity (p = 0.001) and femoral blood flow (p < 0.0001). After sPLM, peak femoral blood flow was dramatically reduced in COVID-19 compared to CTRL (p = 0.001), as was blood flow ∆peak (p = 0.05) and the area under the curve (p < 0.0001). This altered vascular responsiveness could be one of the unknown components of long COVID-19 syndrome leading to fatigue, changes in muscle metabolism and fibers’ composition, exercise intolerance and increased cardiovascular risk. Impact of specific treatments, such as exercise training, dietary supplements or drugs, should be evaluated.


2012 ◽  
Vol 112 (4) ◽  
pp. 560-565 ◽  
Author(s):  
John McDaniel ◽  
Stephen J. Ives ◽  
Russell S. Richardson

Although a multitude of factors that influence skeletal muscle blood flow have been extensively investigated, the influence of muscle length on limb blood flow has received little attention. Thus the purpose of this investigation was to determine if cyclic changes in muscle length influence resting blood flow. Nine healthy men (28 ± 4 yr of age) underwent a passive knee extension protocol during which the subjects' knee joint was passively extended and flexed through 100–180° knee joint angle at a rate of 1 cycle per 30 s. Femoral blood flow, cardiac output (CO), heart rate (HR), stroke volume (SV), and mean arterial pressure (MAP) were continuously recorded during the entire protocol. These measurements revealed that slow passive changes in knee joint angle did not have a significant influence on HR, SV, MAP, or CO; however, net femoral blood flow demonstrated a curvilinear increase with knee joint angle ( r2 = 0.98) such that blood flow increased by ∼90% (125 ml/min) across the 80° range of motion. This net change in blood flow was due to a constant antegrade blood flow across knee joint angle and negative relationship between retrograde blood flow and knee joint angle ( r2 = 0.98). Thus, despite the absence of central hemodynamic changes and local metabolic factors, blood flow to the leg was altered by changes in muscle length. Therefore, when designing research protocols, researchers need to be cognizant of the fact that joint angle, and ultimately muscle length, influence limb blood flow.


1995 ◽  
Vol 269 (6) ◽  
pp. E1059-E1066 ◽  
Author(s):  
B. Stallknecht ◽  
L. Simonsen ◽  
J. Bulow ◽  
J. Vinten ◽  
H. Galbo

Trained humans (Tr) have a higher fat oxidation during submaximal physical work than sedentary humans (Sed). To investigate whether this reflects a higher adipose tissue lipolytic sensitivity to catecholamines, we infused epinephrine (0.3 nmol.kg-1.min-1) for 65 min in six athletes and six sedentary young men. Glycerol was measured in arterial blood, and intercellular glycerol concentrations in abdominal subcutaneous adipose tissue were measured by microdialysis. Adipose tissue blood flow was measured by 133Xe-washout technique. From these measurements adipose tissue lipolysis was calculated. During epinephrine infusion intercellular glycerol concentrations were lower, but adipose tissue blood flow was higher in trained compared with sedentary subjects (P < 0.05). Glycerol output from subcutaneous tissue (Tr: 604 +/- 322 nmol.100 g-1.min-1; Sed: 689 +/- 203; mean +/- SD) as well as arterial glycerol concentrations (Tr: 129 +/- 36 microM; Sed: 119 +/- 56) did not differ between groups. It is concluded that in intact subcutaneous adipose tissue epinephrine-stimulated blood flow is enhanced, whereas lipolytic sensitivity to epinephrine is the same in trained compared with untrained subjects.


Sign in / Sign up

Export Citation Format

Share Document