muscle dynamics
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 27)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 6 (60) ◽  
Author(s):  
R. W. Nuckols ◽  
S. Lee ◽  
K. Swaminathan ◽  
D. Orzel ◽  
R. D. Howe ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 (2) ◽  
pp. 307-314
Author(s):  
O. O. Danchenko ◽  
Y. V. Nicolaeva ◽  
O. I. Koshelev ◽  
M. M. Danchenko ◽  
O. V. Yakoviichuk ◽  
...  

Among natural antioxidants, increasing attention is being drawn to avenanthramides - phenolic compounds of the common oat Avena sativa (Linnaeus, 1753). Research has shown that avenanthramides have much higher antioxidant activity than well-known bioflavanoids. Currently, a great deal of work is being conducted on the structure of these compounds and mechanisms of their effect on the organism of humans and animals. We explored the specifics of the influence of aqueous extract from A. satíva on the antioxidant activity and fatty acid composition of lipids of histologically similar tissues of geese with different levels of aerobicity (muscles of the stomach and cardiac muscle), dynamics of the birds’ live weight and pterylographic parameters under physiological loading by the development of contour and juvenile feathers. The addition of extract of oat to the diet of geese during growth of feathers was observed to increase the antioxidant activity of their tissues. Physiological loading related to the development of contour feathers in the examined tissues of geese significantly weakens as a result of selective inhibition of synthesis of unsaturated fatty acids, especially oleic acid, the content of which in 28-day old geese of the experimental group decreased by 31.7 in the cardiac muscle and 46.8 times in the stomach, compared with the control. Further changes in fatty acid composition were characterized by lower number of differences between the control and experimental groups. Increase in antioxidant activity in these tissues during development of juvenile feathers (day 49) occurs as a result of activation of alternative mechanisms of antioxidative protection, which take place with no significant changes in fatty acid composition. Furthermore, we determined that in the stomach and cardiac muscles of geese, the action of extract from common oat activated mechanisms of antioxidative protection, which increased the level of correlation between the changes in fatty acid composition. The study confirmed that the extract caused not only significant increase in the weight of geese at the end of the experiment, but also improved their pterylographic parameters. Therefore, it is practical to conduct similar studies on wild species of birds grown for hunting, because this process of development of feathers, particularly for such species of birds, is essential.


Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1024
Author(s):  
Jorge Grasa ◽  
Begoña Calvo

The finite element method has been widely used to investigate the mechanical behavior of biological tissues. When analyzing these particular materials subjected to dynamic requests, time integration algorithms should be considered to incorporate the inertial effects. These algorithms can be classified as implicit or explicit. Although both algorithms have been used in different scenarios, a comparative study of the outcomes of both methods is important to determine the performance of a model used to simulate the active contraction of the skeletal muscle tissue. In this work, dynamic implicit and dynamic explicit solutions are presented for the movement of the eye ball induced by the extraocular muscles. Aspects such as stability, computational time and the influence of mass-scaling for the explicit formulation were assessed using ABAQUS software. Both strategies produced similar results regarding range of movement of the eye ball, total deformation and kinetic energy. Using the implicit dynamic formulation, an important amount of computational time reduction is achieved. Although mass-scaling can reduce the simulation time, the dynamic contraction of the muscle is drastically altered.


2021 ◽  
Vol 18 (176) ◽  
pp. 20210061
Author(s):  
R. C. Riddick ◽  
D. J. Farris ◽  
A. G. Cresswell ◽  
A. D. Kuo ◽  
L. A. Kelly

Unanticipated variations in terrain can destabilize the body. The foot is the primary interface with the ground and we know that cutaneous reflexes provide important sensory feedback. However, little is known about the contribution of stretch reflexes from the muscles within the foot to upright stability. We used intramuscular electromyography measurements of the foot muscles flexor digitorum brevis (FDB) and abductor hallucis (AH) to show for the first time how their short-latency stretch reflex response (SLR) may play an important role in responding to stepping perturbations. The SLR of FDB and AH was highest for downwards steps and lowest for upwards steps, with the response amplitude for level and compliant steps in between. When the type of terrain was unknown or unexpected to the participant, the SLR of AH and the ankle muscle soleus tended to decrease. We found significant relationships between the contact kinematics and forces of the leg and the SLR, but a person's expectation still had significant effects even after accounting for these relationships. Motor control models of short-latency body stabilization should not only include local muscle dynamics, but also predictions of terrain based on higher level information such as from vision or memory.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Rick Waasdorp ◽  
Winfred Mugge ◽  
Hendrik J. Vos ◽  
Jurriaan H. De Groot ◽  
Martin D. Verweij ◽  
...  

2020 ◽  
Vol 117 (50) ◽  
pp. 32124-32135 ◽  
Author(s):  
Jonathan A. Michaels ◽  
Stefan Schaffelhofer ◽  
Andres Agudelo-Toro ◽  
Hansjörg Scherberger

One of the primary ways we interact with the world is using our hands. In macaques, the circuit spanning the anterior intraparietal area, the hand area of the ventral premotor cortex, and the primary motor cortex is necessary for transforming visual information into grasping movements. However, no comprehensive model exists that links all steps of processing from vision to action. We hypothesized that a recurrent neural network mimicking the modular structure of the anatomical circuit and trained to use visual features of objects to generate the required muscle dynamics used by primates to grasp objects would give insight into the computations of the grasping circuit. Internal activity of modular networks trained with these constraints strongly resembled neural activity recorded from the grasping circuit during grasping and paralleled the similarities between brain regions. Network activity during the different phases of the task could be explained by linear dynamics for maintaining a distributed movement plan across the network in the absence of visual stimulus and then generating the required muscle kinematics based on these initial conditions in a module-specific way. These modular models also outperformed alternative models at explaining neural data, despite the absence of neural data during training, suggesting that the inputs, outputs, and architectural constraints imposed were sufficient for recapitulating processing in the grasping circuit. Finally, targeted lesioning of modules produced deficits similar to those observed in lesion studies of the grasping circuit, providing a potential model for how brain regions may coordinate during the visually guided grasping of objects.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Owen N. Beck ◽  
Pawel R. Golyski ◽  
Gregory S. Sawicki

Abstract In an attempt to improve their distance-running performance, many athletes race with carbon fiber plates embedded in their shoe soles. Accordingly, we sought to establish whether, and if so how, adding carbon fiber plates to shoes soles reduces athlete aerobic energy expenditure during running (improves running economy). We tested 15 athletes as they ran at 3.5 m/s in four footwear conditions that varied in shoe sole bending stiffness, modified by carbon fiber plates. For each condition, we quantified athlete aerobic energy expenditure and performed biomechanical analyses, which included the use of ultrasonography to examine soleus muscle dynamics in vivo. Overall, increased footwear bending stiffness lengthened ground contact time (p = 0.048), but did not affect ankle (p ≥ 0.060), knee (p ≥ 0.128), or hip (p ≥ 0.076) joint angles or moments. Additionally, increased footwear bending stiffness did not affect muscle activity (all seven measured leg muscles (p ≥ 0.146)), soleus active muscle volume (p = 0.538; d = 0.241), or aerobic power (p = 0.458; d = 0.04) during running. Hence, footwear bending stiffness does not appear to alter the volume of aerobic energy consuming muscle in the soleus, or any other leg muscle, during running. Therefore, adding carbon fiber plates to shoe soles slightly alters whole-body and calf muscle biomechanics but may not improve running economy.


Sensors ◽  
2020 ◽  
Vol 20 (19) ◽  
pp. 5513 ◽  
Author(s):  
Yan To Ling ◽  
Christina Zong-Hao Ma ◽  
Queenie Tsung Kwan Shea ◽  
Yong-Ping Zheng

Background: Available methods for studying muscle dynamics, including electromyography (EMG), mechanomyography (MMG) and M-mode ultrasound, have limitations in terms of spatial resolution. Methods: This study developed a novel method/protocol of two-dimensional mapping of muscle motion onset using ultrafast ultrasound imaging, i.e., sono-mechano-myo-graphy (SMMG). The developed method was compared with the EMG, MMG and force outputs of tibialis anterior (TA) muscle during ankle dorsiflexion at different percentages of maximum voluntary contraction (MVC) force in healthy young adults. Results: Significant differences between all pairwise comparisons of onsets were identified, except between SMMG and MMG. The EMG onset significantly led SMMG, MMG and force onsets by 40.0 ± 1.7 ms (p < 0.001), 43.1 ± 5.2 ms (p < 0.005) and 73.0 ± 4.5 ms (p < 0.001), respectively. Muscle motion also started earlier at the middle aponeurosis than skin surface and deeper regions when viewed longitudinally (p < 0.001). No significant effect of force level on onset delay was found. Conclusions: This study introduced and evaluated a new method/protocol, SMMG, for studying muscle dynamics and demonstrated its feasibility for muscle contraction onset research. This novel technology can potentially provide new insights for future studies of neuromuscular diseases, such as multiple sclerosis and muscular dystrophy.


Sign in / Sign up

Export Citation Format

Share Document