Analysis of flow resistance in the pulmonary arterial circulation: Implications for hypoxic pulmonary vasoconstriction

Author(s):  
David Walter Johnson ◽  
Tuhin K. Roy ◽  
Timothy W. Secomb

Hypoxic pulmonary vasoconstriction (HPV) plays an essential role in distributing blood in the lung to enhance ventilation-perfusion matching and blood oxygenation. In this study, a theoretical model of the pulmonary vasculature is used to predict the effects of vasoconstriction over specified ranges of vessel diameters on pulmonary vascular resistance (PVR). The model is used to evaluate the ability of hypothesized mechanisms of HPV to account for observed levels of PVR elevation during hypoxia. The vascular structure from pulmonary arteries to capillaries is represented using scaling laws. Vessel segments are modeled as resistive elements and blood flow rates are computed from physical principles. Direct vascular responses to intravascular oxygen levels have been proposed as a mechanism of HPV. In the lung, significant changes in oxygen level occur only in vessels less than 60 μm in diameter. The model shows that observed levels of hypoxic vasoconstriction in these vessels alone cannot account for the elevation of PVR associated with HPV. However, the elevation in PVR associated with HPV can be accounted for if larger upstream vessels also constrict. These results imply that upstream signaling by conducted responses to engage constriction of arterioles plays an essential role in the elevation of PVR during HPV.

2005 ◽  
Vol 289 (1) ◽  
pp. L5-L13 ◽  
Author(s):  
Letitia Weigand ◽  
Joshua Foxson ◽  
Jian Wang ◽  
Larissa A. Shimoda ◽  
J. T. Sylvester

Previous studies indicated that acute hypoxia increased intracellular Ca2+ concentration ([Ca2+]i), Ca2+ influx, and capacitative Ca2+ entry (CCE) through store-operated Ca2+ channels (SOCC) in smooth muscle cells from distal pulmonary arteries (PASMC), which are thought to be a major locus of hypoxic pulmonary vasoconstriction (HPV). Moreover, these effects were blocked by Ca2+-free conditions and antagonists of SOCC and nonselective cation channels (NSCC). To test the hypothesis that in vivo HPV requires CCE, we measured the effects of SOCC/NSCC antagonists (SKF-96365, NiCl2, and LaCl3) on pulmonary arterial pressor responses to 2% O2 and high-KCl concentrations in isolated rat lungs. At concentrations that blocked CCE and [Ca2+]i responses to hypoxia in PASMC, SKF-96365 and NiCl2 prevented and reversed HPV but did not alter pressor responses to KCl. At 10 μM, LaCl3 had similar effects, but higher concentrations (30 and 100 μM) caused vasoconstriction during normoxia and potentiated HPV, indicating actions other than SOCC blockade. Ca2+-free perfusate and the voltage-operated Ca2+ channel (VOCC) antagonist nifedipine were potent inhibitors of pressor responses to both hypoxia and KCl. We conclude that HPV required influx of Ca2+ through both SOCC and VOCC. This dual requirement and virtual abolition of HPV by either SOCC or VOCC antagonists suggests that neither channel provided enough Ca2+ on its own to trigger PASMC contraction and/or that during hypoxia, SOCC-dependent depolarization caused secondary activation of VOCC.


1990 ◽  
Vol 68 (1) ◽  
pp. 253-259 ◽  
Author(s):  
C. M. Tseng ◽  
M. McGeady ◽  
T. Privett ◽  
A. Dunn ◽  
J. T. Sylvester

To evaluate leukotriene (LT) C4 as a mediator of hypoxic pulmonary vasoconstriction, we examined the effects of FPL55712, a putative LT antagonist, and indomethacin, a cyclooxygenase inhibitor, on vasopressor responses to LTC4 and hypoxia (inspired O2 tension = 25 Torr) in isolated ferret lungs perfused with a constant flow (50 ml.kg-1.min-1). Pulmonary arterial injections of LTC4 caused dose-related increases in pulmonary arterial pressure during perfusion with physiological salt solution containing Ficoll (4 g/dl). FPL55712 caused concentration-related inhibition of the pressor response to LTC4 (0.6 micrograms). Although 10 micrograms/ml FPL55712 inhibited the LTC4 pressor response by 61%, it did not alter the response to hypoxia. At 100 microgram/ml, FPL55712 inhibited the responses to LTC4 and hypoxia by 73 and 71%, respectively, but also attenuated the vasoconstrictor responses to prostaglandin F2 alpha (78% at 8 micrograms), phenylephrine (68% at 100 micrograms), and KCl (51% at 40 mM). At 0.5 microgram/ml, indomethacin significantly attenuated the pressor response to arachidonic acid but did not alter responses to LTC4 or hypoxia. These results suggest that in isolated ferret lungs 1) the vasoconstrictor response to LTC4 did not depend on release of cyclooxygenase products and 2) LTC4 did not mediate hypoxic vasoconstriction.


1991 ◽  
Vol 70 (3) ◽  
pp. 1255-1264 ◽  
Author(s):  
R. P. Michel ◽  
J. B. Gordon ◽  
K. Chu

Our objectives were 1) to describe the quantitative light microscopy and ultrastructure of newborn lamb lungs and 2) to correlate hemodynamic changes during normoxia and hypoxia with the morphology. By light microscopy, we measured the percent muscle thickness (%MT) and peripheral muscularization of pulmonary arteries and veins from 25 lambs aged less than 24 h, 2-4 days, 2 wk, and 1 mo. At the same ages, lungs were isolated and perfused in situ and, after cyclooxygenase blockade with indomethacin, total, arterial (delta Pa), middle (delta Pm), and venous pressure gradients at inspired O2 fractions of 0.28 (mild hyperoxia) and 0.04 (hypoxia) were determined with inflow-outflow occlusion. During mild hyperoxia, delta Pa and delta Pm fell significantly between 2-4 days and 2 wk, whereas during hypoxia, only delta Pm fell. The %MT of all arteries (less than 50 to greater than 1,000 microns diam) decreased, and peripheral muscularization of less than 100-microns-diam arteries fell between less than 4 days and greater than 2 wk. Our data suggest that 1) the %MT of arteries determines normoxic pulmonary vascular resistance, because only arterial and middle segment resistance fell, 2) peripheral muscularization is a major determinant of hypoxic pulmonary vasoconstriction, because we observed a fall with age in peripheral muscularization of less than 100-micron-diam arteries and in delta Pm with hypoxia, and 3) the arterial limit of the middle segment defined by inflow-outflow occlusion lies in 100- to 1,000-microns-diam arteries.


1998 ◽  
Vol 274 (2) ◽  
pp. L186-L195 ◽  
Author(s):  
Imad S. Farrukh ◽  
Wei Peng ◽  
Urszula Orlinska ◽  
John R. Hoidal

In the present study, we investigated the effects of the naturally occurring hormone dehydroepiandrosterone (DHEA) on hypoxic pulmonary vasoconstriction (HPVC) in isolated ferret lungs and on K+ currents in isolated and cultured ferret pulmonary arterial smooth muscle cells (FPSMCs). Severe alveolar hypoxia (3% O2-5% CO2-92% N2) caused an initial increase in pulmonary arterial pressure (Ppa) that was followed by a reversal in pulmonary hypertension. Maintaining alveolar hypoxia caused a sustained secondary increase in Ppa. Pretreating the lungs with the K+-channel inhibitor tetraethylammonium (TEA) caused a small increase in baseline Ppa, potentiated HPVC, and prevented the reversal of HPVC during the sustained alveolar hypoxia. Treating the lungs with DHEA caused a near-complete reversal of HPVC in control lungs and in lungs that were pretreated with TEA. DHEA also reversed the KCl-induced increase in Ppa. In FPSMCs, DHEA caused an adenosine 3′,5′-cyclic monophosphate- and guanosine 3′,5′-cyclic monophosphate-independent increase in activity of the Ca2+-activated K+(KCa) current. In a cell-attached configuration, DHEA caused a mean shift of −22 mV in the voltage-dependent activation of the KCa channel. We conclude that DHEA is a novel KCa-channel opener of the pulmonary vasculature.


1993 ◽  
Vol 74 (5) ◽  
pp. 2188-2193 ◽  
Author(s):  
P. Ewalenko ◽  
C. Stefanidis ◽  
A. Holoye ◽  
S. Brimioulle ◽  
R. Naeije

The pulmonary vascular effects of inhaled anesthetics have been reported variably. We compared the effects of intravenous anesthesia (propofol) and inhalational anesthesia (isoflurane) on multipoint mean [pulmonary arterial pressure (Ppa)-pulmonary arterial occluded pressure (PpaO)]/cardiac output (Q) plots and on pulmonary vascular impedance (PVZ) spectra in eight dogs alternatively ventilated in hyperoxia [inspired O2 fraction (FIO2) 0.4] and in hypoxia (FIO2 0.1). Q was altered by a manipulation of venous return. During propofol, hypoxia increased (Ppa-PpaO) by an average of 2–3 mmHg over the entire range of Q studied, from 1 to 2.5 l.min-1 x m-2. This hypoxic pulmonary vasoconstriction (HPV) was associated with insignificant changes in PVZ. Decreasing Q in hypoxia and hyperoxia did not affect PVZ. Compared with propofol, isoflurane decreased (Ppa-PpaO) by an average of 2–5 mmHg at all levels of Q studied in both hypoxia and hyperoxia but did not affect HPV. During isoflurane anesthesia, 0 Hz PVZ was lower (P < 0.01) in hypoxia, but otherwise the PVZ spectrum was not different from that recorded during propofol anesthesia. We conclude that, in dogs, 1 degree general anesthesia with isoflurane alone decreases pulmonary vascular tone without inhibition of HPV and that 2 degrees pressure/Q plots in the time domain are more sensitive than those in the frequency domain to subtle hemodynamic changes induced by hypoxia or isoflurane at the periphery of the pulmonary vasculature.


1986 ◽  
Vol 61 (6) ◽  
pp. 2116-2121 ◽  
Author(s):  
J. B. Gordon ◽  
R. C. Wetzel ◽  
M. L. McGeady ◽  
N. F. Adkinson ◽  
J. T. Sylvester

To determine whether cyclooxygenase products mediated the attenuation of hypoxic pulmonary vasoconstriction induced by estradiol, we measured pulmonary arterial pressure at a flow of 50 ml X min-1 X kg-1 (Ppa50) during steady-state exposures to inspired O2 tensions (PIO2) between 0 and 200 Torr in isolated lungs of juvenile ewes. Intramuscular estradiol (10 mg) 44–60 h before study significantly decreased perfusate concentrations of 6-ketoprostaglandin F1 alpha (6-keto-PGF1 alpha), the stable metabolite of the pulmonary vasodilator, prostacyclin, but did not significantly affect the stimulus-response relationship between PIO2 and Ppa50. Estradiol (20 mg) 3–5 days before study increased 6-keto-PGF1 alpha concentrations and decreased Ppa50 at PIO2 of 10, 30, and 50 Torr. Indomethacin added to the perfusate of these lungs reduced 6-keto-PGF1 alpha to undetectable levels and altered the estradiol-induced attenuation, increasing Ppa50 at PIO2 of 10 and 30 Torr, but decreasing Ppa50 at PIO2 of 200 Torr. Despite these effects, Ppa50 remained lower than the values measured in lungs not treated with estradiol. These results suggest that the estradiol-induced attenuation of the hypoxic stimulus-response relationship was mediated only in part by cyclooxygenase products, the net effects of which were vasodilation at PIO2 of 10 and 30 Torr, but vasoconstriction at PIO2 of 200 Torr.


2008 ◽  
Vol 294 (2) ◽  
pp. R601-R605 ◽  
Author(s):  
Bodil Petersen ◽  
Maria Deja ◽  
Roland Bartholdy ◽  
Bernd Donaubauer ◽  
Sven Laudi ◽  
...  

Endogenous endothelin (ET)-1 modulates hypoxic pulmonary vasoconstriction (HPV). Accordingly, intravenously applied ETAreceptor antagonists reduce HPV, but this is accompanied by systemic vasodilation. We hypothesized that inhalation of an ETAreceptor antagonist might act selectively on the pulmonary vasculature and investigated the effects of aerosolized LU-135252 in an experimental model of HPV. Sixteen piglets (weight: 25 ± 1 kg) were anesthetized and mechanically ventilated at an inspiratory oxygen fraction (FiO2) of 0.3. After 1 h of hypoxia at FiO20.15, animals were randomly assigned either to receive aerosolized LU-135252 as bolus (0.3 mg/kg for 20 min; n = 8, LU group), or to receive aerosolized saline ( n = 8, controls). In all animals, hypoxia significantly increased mean pulmonary arterial pressure (32 ± 1 vs. 23 ± 1 mmHg; P < 0.01; means ± SE) and increased arterial plasma ET-1 (0.52 ± 0.04 vs. 0.37 ± 0.05 fmol/ml; P < 0.01) compared with mild hyperoxia at FiO20.3. Inhalation of LU-135252 induced a significant and sustained decrease in mean pulmonary arterial pressure compared with controls (LU group: 27 ± 1 mmHg; controls: 32 ± 1 mmHg; values at 4 h of hypoxia; P < 0.01). In parallel, mean systemic arterial pressure and cardiac output remained stable and were not significantly different from control values. Consequently, in our experimental model of HPV, the inhaled ETAreceptor antagonist LU-135252 induced selective pulmonary vasodilation without adverse systemic hemodynamic effects.


2003 ◽  
Vol 285 (3) ◽  
pp. L680-L690 ◽  
Author(s):  
Wei-Min Zhang ◽  
Kay-Pong Yip ◽  
Mo-Jun Lin ◽  
Larissa A. Shimoda ◽  
Wen-Hong Li ◽  
...  

Ca+ sparks originating from ryanodine receptors (RyRs) are known to cause membrane hyperpolarization and vasorelaxation in systemic arterial myocytes. By contrast, we have found that Ca2+ sparks of pulmonary arterial smooth muscle cells (PASMCs) are associated with membrane depolarization and activated by endothelin-1 (ET-1), a potent vasoconstrictor that mediates/modulates acute and chronic hypoxic pulmonary vasoconstriction. In this study, we characterized the effects of ET-1 on the physical properties of Ca2+ sparks and probed the signal transduction mechanism for spark activation in rat intralobar PASMCs. Application of ET-1 at 0.1-10 nM caused concentration-dependent increases in frequency, duration, and amplitude of Ca2+ sparks. The ET-1-induced increase in spark frequency was inhibited by BQ-123, an ETA-receptor antagonist; by U-73122, a PLC inhibitor; and by xestospongin C and 2-aminoethyl diphenylborate, antagonists of inositol trisphosphate (IP3) receptors (IP3Rs). However, it was unrelated to sarcoplasmic reticulum Ca2+ content, activation of L-type Ca2+ channels, PKC, or cADP ribose. Photorelease of caged-IP3 indicated that Ca2+ release from IP3R could cross-activate RyRs to generate Ca2+ sparks. Immunocytochemistry showed that the distributions of IP3Rs and RyRs were similar in PASMCs. Moreover, inhibition of Ca2+ sparks with ryanodine caused a significant rightward shift in the ET-1 concentration-tension relationship in pulmonary arteries. These results suggest that ET-1 activation of Ca2+ sparks is mediated via the ETA receptor-PLC-IP3 pathway and local Ca2+ cross-signaling between IP3Rs and RyRs; in addition, this novel signaling mechanism contributes significantly to the ET-1-induced vasoconstriction in pulmonary arteries.


2001 ◽  
Vol 280 (5) ◽  
pp. L856-L865 ◽  
Author(s):  
Q. Liu ◽  
J. S. K. Sham ◽  
L. A. Shimoda ◽  
J. T. Sylvester

To determine the role of endothelium in hypoxic pulmonary vasoconstriction (HPV), we measured vasomotor responses to hypoxia in isolated seventh-generation porcine pulmonary arteries < 300 μm in diameter with (E+) and without endothelium. In E+ pulmonary arteries, hypoxia decreased the vascular intraluminal diameter measured at a constant transmural pressure. These constrictions were complete in 30–40 min; maximum at Po 2 of 2 mmHg; half-maximal at Po 2 of 40 mmHg; blocked by exposure to Ca2+-free conditions, nifedipine, or ryanodine; and absent in E+ bronchial arteries of similar size. Hypoxic constrictions were unaltered by indomethacin, enhanced by indomethacin plus N G-nitro-l-arginine methyl ester, abolished by BQ-123 or endothelial denudation, and restored in endothelium-denuded pulmonary arteries pretreated with 10−10 M endothelin-1 (ET-1). Given previous demonstrations that hypoxia caused contractions in isolated pulmonary arterial myocytes and that ET-1 receptor antagonists inhibited HPV in intact animals, our results suggest that full in vivo expression of HPV requires basal release of ET-1 from the endothelium to facilitate mechanisms of hypoxic reactivity in pulmonary arterial smooth muscle.


2011 ◽  
Vol 301 (1) ◽  
pp. C186-C194 ◽  
Author(s):  
Javier Moral-Sanz ◽  
Teresa Gonzalez ◽  
Carmen Menendez ◽  
Miren David ◽  
Laura Moreno ◽  
...  

Neutral sphingomyelinase (nSMase)-derived ceramide has been proposed as a mediator of hypoxic pulmonary vasoconstriction (HPV), a specific response of the pulmonary circulation. Voltage-gated K+ (Kv) channels are modulated by numerous vasoactive factors, including hypoxia, and their inhibition has been involved in HPV. Herein, we have analyzed the effects of ceramide on Kv currents and contractility in rat pulmonary arteries (PA) and in mesenteric arteries (MA). The ceramide analog C6-ceramide inhibited Kv currents in PA smooth muscle cells (PASMC). Similar effects were obtained after the addition of bacterial sphingomyelinase (SMase), indicating a role for endogenous ceramide in Kv channel regulation. Kv current was reduced by stromatoxin and diphenylphosphine oxide-1 (DPO-1), selective inhibitors of Kv2.1 and Kv1.5 channels, respectively. The inhibitory effect of ceramide was still present in the presence of stromatoxin or DPO-1, suggesting that this sphingolipid inhibited both components of the native Kv current. Accordingly, ceramide inhibited Kv1.5 and Kv2.1 channels expressed in Ltk− cells. Ceramide-induced effects were reduced in human embryonic kidney 293 cells expressing Kv1.5 channels but not the regulatory subunit Kvβ2.1. The nSMase inhibitor GW4869 reduced the thromboxane-endoperoxide receptor agonist U46619-induced, but not endothelin-1-induced pulmonary vasoconstriction that was partly restored after addition of exogenous ceramide. The PKC-ζ pseudosubstrate inhibitor (PKCζ-PI) inhibited the Kv inhibitory and contractile effects of ceramide. In MA ceramide had no effect on Kv currents and GW4869 did not affect U46619-induced contraction. The effects of SMase were also observed in human PA. These results suggest that ceramide represents a crucial signaling mediator in the pulmonary vasculature.


Sign in / Sign up

Export Citation Format

Share Document