Muscle metaboreflex-induced increases in cardiac sympathetic activity vasoconstrict the coronary vasculature

2007 ◽  
Vol 103 (1) ◽  
pp. 190-194 ◽  
Author(s):  
Donal S. O'Leary ◽  
Javier A. Sala-Mercado ◽  
Robert L. Hammond ◽  
Eric J. Ansorge ◽  
Jong-Kyung Kim ◽  
...  

Ischemia of active skeletal muscle evokes a powerful blood pressure-raising reflex termed the muscle metaboreflex (MMR). MMR activation increases cardiac sympathetic nerve activity, which increases heart rate, ventricular contractility, and cardiac output (CO). However, despite the marked increase in ventricular work, no coronary vasodilation occurs. Using conscious, chronically instrumented dogs, we observed MMR-induced changes in arterial pressure, CO, left circumflex coronary blood flow (CBF), and coronary vascular conductance (CVC) before and after α1-receptor blockade (prazosin, 100 μg/kg iv). MMR was activated during mild treadmill exercise by partially reducing hindlimb blood flow. In control experiments, MMR activation caused a substantial pressor response-mediated via increases in CO. Although CBF increased (+28.1 ± 3.7 ml/min; P < 0.05), CVC did not change (0.45 ± 0.05 vs. 0.47 ± 0.06 ml·min−1·mmHg−1, exercise vs. exercise with MMR activation, respectively; P > 0.05). Thus all of the increase in CBF was due to the increase in arterial pressure. In contrast, after prazosin, MMR activation caused a greater increase in CBF (+55.9 ± 17.1 ml/min; P < 0.05 vs. control) and CVC rose significantly (0.59 ± 0.08 vs. 0.81 ± 0.17 ml·min−1·mmHg−1, exercise vs. exercise with MMR activation, respectively; P < 0.05). A greater increase in CO also occurred (+2.01 ± 0.1 vs. +3.27 ± 1.1 l/min, control vs. prazosin, respectively; P < 0.05). We conclude that the MMR-induced increases in sympathetic activity to the heart functionally restrain coronary vasodilation, which may limit increases in ventricular function.

2010 ◽  
Vol 109 (2) ◽  
pp. 271-278 ◽  
Author(s):  
Matthew Coutsos ◽  
Javier A. Sala-Mercado ◽  
Masashi Ichinose ◽  
ZhenHua Li ◽  
Elizabeth J. Dawe ◽  
...  

Muscle metaboreflex activation during dynamic exercise induces a substantial increase in cardiac work and oxygen demand via a significant increase in heart rate, ventricular contractility, and afterload. This increase in cardiac work should cause coronary metabolic vasodilation. However, little if any coronary vasodilation is observed due to concomitant sympathetically induced coronary vasoconstriction. The purpose of the present study is to determine whether the restraint of coronary vasodilation functionally limits increases in left ventricular contractility. Using chronically instrumented, conscious dogs ( n = 9), we measured mean arterial pressure, cardiac output, and circumflex blood flow and calculated coronary vascular conductance, maximal derivative of ventricular pressure (dp/d tmax), and preload recruitable stroke work (PRSW) at rest and during mild exercise (2 mph) before and during activation of the muscle metaboreflex. Experiments were repeated after systemic α1-adrenergic blockade (∼50 μg/kg prazosin). During prazosin administration, we observed significantly greater increases in coronary vascular conductance (0.64 ± 0.06 vs. 0.46 ± 0.03 ml·min−1·mmHg−1; P < 0.05), circumflex blood flow (77.9 ± 6.6 vs. 63.0 ± 4.5 ml/min; P < 0.05), cardiac output (7.38 ± 0.52 vs. 6.02 ± 0.42 l/min; P < 0.05), dP/d tmax (5,449 ± 339 vs. 3,888 ± 243 mmHg/s; P < 0.05), and PRSW (160.1 ± 10.3 vs. 183.8 ± 9.2 erg·103/ml; P < 0.05) with metaboreflex activation vs. those seen in control experiments. We conclude that the sympathetic restraint of coronary vasodilation functionally limits further reflex increases in left ventricular contractility.


1995 ◽  
Vol 268 (3) ◽  
pp. H980-H986 ◽  
Author(s):  
D. S. O'Leary ◽  
D. D. Sheriff

Ischemia of active skeletal muscle induces a reflex increase in sympathetic activity, heart rate, cardiac output, and arterial pressure, termed the muscle metaboreflex. Whether this pressor response contributes importantly in the regulation of blood flow to the ischemic active skeletal muscle is not well understood. If the pressor response is achieved without substantial vasoconstriction in the ischemic muscle, this increase in arterial pressure would act to improve muscle blood flow. Dogs performed treadmill exercise at mild (3.2 km/h, 0% grade) and moderate (6.4 km/h, 10% grade) workloads. During each workload, resistance to blood flow in the hindlimbs (Rh) was increased via graded partial inflation of a vascular occluder implanted on the terminal aorta. The closed-loop gain of the muscle metaboreflex (Gcl) was calculated, based on the steady-state changes in terminal aortic blood flow (TAQ). If no pressor response occurred, then TAQ should decrease in proportion to the increase in total Rh (the sum of resistance due to partial vascular occlusion and hindlimb vascular resistance); i.e., no reflex restoration of hindlimb blood flow would occur. However, with a reflex increase in systemic arterial pressure, TAQ could rise above the level predicted on the basis of the increase in Rh. We observed that with the initial increase in Rh during mild exercise, Gcl was not significantly different from zero (P > 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)


2005 ◽  
Vol 289 (6) ◽  
pp. H2416-H2423 ◽  
Author(s):  
Jong-Kyung Kim ◽  
Javier A. Sala-Mercado ◽  
Robert L. Hammond ◽  
Jaime Rodriguez ◽  
Tadeusz J. Scislo ◽  
...  

Previous studies have shown that heart failure (HF) or sinoaortic denervation (SAD) alters the strength and mechanisms of the muscle metaboreflex during dynamic exercise. However, it is still unknown to what extent SAD may modify the muscle metaboreflex in HF. Therefore, we quantified the contribution of cardiac output (CO) and peripheral vasoconstriction to metaboreflex-mediated increases in mean arterial blood pressure (MAP) in conscious, chronically instrumented dogs before and after induction of HF in both barointact and SAD conditions during mild and moderate exercise. The muscle metaboreflex was activated via partial reductions in hindlimb blood flow. After SAD, the metaboreflex pressor responses were significantly higher with respect to the barointact condition despite lower CO responses. The pressor response was significantly lower in HF after SAD but still higher than that of HF in the barointact condition. During control experiments in the barointact condition, total vascular conductance summed from all beds except the hindlimbs did not change with muscle metaboreflex activation, whereas in the SAD condition both before and after induction of HF significant vasoconstriction occurred. We conclude that SAD substantially increased the contribution of peripheral vasoconstriction to metaboreflex-induced increases in MAP, whereas in HF SAD did not markedly alter the patterns of the reflex responses, likely reflecting that in HF the ability of the arterial baroreflex to buffer metaboreflex responses is impaired.


2005 ◽  
Vol 288 (3) ◽  
pp. H1374-H1380 ◽  
Author(s):  
Jong-Kyung Kim ◽  
Javier A. Sala-Mercado ◽  
Jaime Rodriguez ◽  
Tadeusz J. Scislo ◽  
Donal S. O'Leary

Previous studies showed that the arterial baroreflex opposes the pressor response mediated by muscle metaboreflex activation during mild dynamic exercise. However, no studies have investigated the mechanisms contributing to metaboreflex-mediated pressor responses during dynamic exercise after arterial baroreceptor denervation. Therefore, we investigated the contribution of cardiac output (CO) and peripheral vasoconstriction in mediating the pressor response to graded reductions in hindlimb perfusion in conscious, chronically instrumented dogs before and after sinoaortic denervation (SAD) during mild and moderate exercise. In control experiments, the metaboreflex pressor responses were mediated via increases in CO. After SAD, the metaboreflex pressor responses were significantly greater and significantly smaller increases in CO occurred. During control experiments, nonischemic vascular conductance (NIVC) did not change with muscle metaboreflex activation, whereas after SAD NIVC significantly decreased with metaboreflex activation; thus SAD shifted the mechanisms of the muscle metaboreflex from mainly increases in CO to combined cardiac and peripheral vasoconstrictor responses. We conclude that the major mechanism by which the arterial baroreflex buffers the muscle metaboreflex is inhibition of metaboreflex-mediated peripheral vasoconstriction.


2014 ◽  
Vol 306 (2) ◽  
pp. H251-H260 ◽  
Author(s):  
Kazuhito Watanabe ◽  
Masashi Ichinose ◽  
Rei Tahara ◽  
Takeshi Nishiyasu

We tested the hypotheses that, in humans, changes in cardiac output (CO) and total peripheral vascular resistance (TPR) occurring in response to isometric handgrip exercise vary considerably among individuals and that those individual differences are related to differences in muscle metaboreflex and arterial baroreflex function. Thirty-nine healthy subjects performed a 1-min isometric handgrip exercise at 50% of maximal voluntary contraction. This was followed by a 4-min postexercise muscle ischemia (PEMI) period to selectively maintain activation of the muscle metaboreflex. All subjects showed increases in arterial pressure during exercise. Interindividual coefficients of variation (CVs) for the changes in CO and TPR between rest and exercise periods (CO: 95.1% and TPR: 87.8%) were more than twofold greater than CVs for changes in mean arterial pressure (39.7%). There was a negative correlation between CO and TPR responses during exercise ( r = −0.751, P < 0.01), but these CO and TPR responses correlated positively with the corresponding responses during PEMI ( r = 0.568 and 0.512, respectively, P < 0.01). The CO response during exercise did not correlate with PEMI-induced changes in an index of cardiac parasympathetic tone and cardiac baroreflex sensitivity. These findings demonstrate that the changes in CO and TPR that occur in response to isometric handgrip exercise vary considerably among individuals and that the two responses have an inverse relationship. They also suggest that individual differences in components of the pressor response are attributable in part to variations in muscle metaboreflex-mediated cardioaccelerator and vasoconstrictor responses.


2007 ◽  
Vol 292 (5) ◽  
pp. H2159-H2166 ◽  
Author(s):  
Javier A. Sala-Mercado ◽  
Robert L. Hammond ◽  
Jong-Kyung Kim ◽  
Phillip J. McDonald ◽  
Larry W. Stephenson ◽  
...  

Underperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex (MMR). In normal dogs during mild exercise, MMR activation causes large increases in cardiac output (CO) and mean arterial pressure (MAP); however, in heart failure (HF) although MAP increases, the rise in CO is virtually abolished, which may be due to an impaired ability to increase left ventricular contractility (LVC). The objective of the present study was to determine whether the increases in LVC seen with MMR activation during dynamic exercise in normal animals are abolished in HF. Conscious dogs were chronically instrumented to measure CO, MAP, and left ventricular (LV) pressure and volume. LVC was calculated from pressure-volume loop analysis [LV maximal elastance ( Emax) and preload-recruitable stroke work (PRSW)] at rest and during mild and moderate exercise under free-flow conditions and with MMR activation (via partial occlusion of hindlimb blood flow) before and after rapid ventricular pacing-induced HF. In control experiments, MMR activation at both workloads [mild exercise (3.2 km/h) and moderate exercise (6.4 km/h at 10% grade)] significantly increased CO, Emax, and PRSW. In contrast, after HF was induced, CO, Emax, and PRSW were significantly lower at rest. Although CO increased significantly from rest to exercise, Emax and PRSW did not change. In addition, MMR activation caused no significant change in CO, Emax, or PRSW at either workload. We conclude that MMR causes large increases in LVC in normal animals but that this ability is abolished in HF.


2016 ◽  
Vol 311 (5) ◽  
pp. H1268-H1276 ◽  
Author(s):  
Jasdeep Kaur ◽  
Alberto Alvarez ◽  
Hanna W. Hanna ◽  
Abhinav C. Krishnan ◽  
Danielle Senador ◽  
...  

The muscle metaboreflex and arterial baroreflex regulate arterial pressure through distinct mechanisms. During submaximal exercise muscle metaboreflex activation (MMA) elicits a pressor response virtually solely by increasing cardiac output (CO) while baroreceptor unloading increases mean arterial pressure (MAP) primarily through peripheral vasoconstriction. The interaction between the two reflexes when activated simultaneously has not been well established. We activated the muscle metaboreflex in chronically instrumented canines during dynamic exercise (via graded reductions in hindlimb blood flow; HLBF) followed by simultaneous baroreceptor unloading (via bilateral carotid occlusion; BCO). We hypothesized that simultaneous activation of both reflexes would result in an exacerbated pressor response owing to both an increase in CO and vasoconstriction. We observed that coactivation of muscle metaboreflex and arterial baroreflex resulted in additive interaction although the mechanisms for the pressor response were different. MMA increased MAP via increases in CO, heart rate (HR), and ventricular contractility whereas baroreflex unloading during MMA caused further increases in MAP via a large decrease in nonischemic vascular conductance (NIVC; conductance of all vascular beds except the hindlimb vasculature), indicating substantial peripheral vasoconstriction. Moreover, there was significant vasoconstriction within the ischemic muscle itself during coactivation of the two reflexes but the remaining vasculature vasoconstricted to a greater extent, thereby redirecting blood flow to the ischemic muscle. We conclude that baroreceptor unloading during MMA induces preferential peripheral vasoconstriction to improve blood flow to the ischemic active skeletal muscle.


1986 ◽  
Vol 61 (6) ◽  
pp. 2136-2143 ◽  
Author(s):  
D. C. Curran-Everett ◽  
K. McAndrews ◽  
J. A. Krasney

The effects of acute hypoxia on regional pulmonary perfusion have been studied previously in anesthetized, artificially ventilated sheep (J. Appl. Physiol. 56: 338–342, 1984). That study indicated that a rise in pulmonary arterial pressure was associated with a shift of pulmonary blood flow toward dorsal (nondependent) areas of the lung. This study examined the relationship between the pulmonary arterial pressor response and regional pulmonary blood flow in five conscious, standing ewes during 96 h of normobaric hypoxia. The sheep were made hypoxic by N2 dilution in an environmental chamber [arterial O2 tension (PaO2) = 37–42 Torr, arterial CO2 tension (PaCO2) = 25–30 Torr]. Regional pulmonary blood flow was calculated by injecting 15-micron radiolabeled microspheres into the superior vena cava during normoxia and at 24-h intervals of hypoxia. Pulmonary arterial pressure increased from 12 Torr during normoxia to 19–22 Torr throughout hypoxia (alpha less than 0.049). Pulmonary blood flow, expressed as %QCO or ml X min-1 X g-1, did not shift among dorsal and ventral regions during hypoxia (alpha greater than 0.25); nor were there interlobar shifts of blood flow (alpha greater than 0.10). These data suggest that conscious, standing sheep do not demonstrate a shift in pulmonary blood flow during 96 h of normobaric hypoxia even though pulmonary arterial pressure rises 7–10 Torr. We question whether global hypoxic pulmonary vasoconstriction is, by itself, beneficial to the sheep.


2010 ◽  
Vol 30 (11) ◽  
pp. 1883-1889 ◽  
Author(s):  
Allyson R Zazulia ◽  
Tom O Videen ◽  
John C Morris ◽  
William J Powers

Studies in transgenic mice overexpressing amyloid precursor protein (APP) demonstrate impaired autoregulation of cerebral blood flow (CBF) to changes in arterial pressure and suggest that cerebrovascular dysfunction may be critically important in the development of pathological Alzheimer's disease (AD). Given the relevance of such a finding for guiding hypertension treatment in the elderly, we assessed autoregulation in individuals with AD. Twenty persons aged 75±6 years with very mild or mild symptomatic AD (Clinical Dementia Rating 0.5 or 1.0) underwent 15O-positron emission tomography (PET) CBF measurements before and after mean arterial pressure (MAP) was lowered from 107±13 to 92±9 mm Hg with intravenous nicardipine; 11C-PIB-PET imaging and magnetic resonance imaging (MRI) were also obtained. There were no significant differences in mean CBF before and after MAP reduction in the bilateral hemispheres (−0.9±5.2 mL per 100 g per minute, P=0.4, 95% confidence interval (CI)=−3.4 to 1.5), cortical borderzones (−1.9±5.0 mL per 100 g per minute, P=0.10, 95% CI=−4.3 to 0.4), regions of T2W-MRI-defined leukoaraiosis (−0.3±4.4 mL per 100 g per minute, P=0.85, 95% CI=−3.3 to 3.9), or regions of peak 11C-PIB uptake (−2.5±7.7 mL per 100 g per minute, P=0.30, 95% CI=−7.7 to 2.7). The absence of significant change in CBF with a 10 to 15 mm Hg reduction in MAP within the normal autoregulatory range demonstrates that there is neither a generalized nor local defect of autoregulation in AD.


1982 ◽  
Vol 52 (3) ◽  
pp. 705-709 ◽  
Author(s):  
B. R. Walker ◽  
N. F. Voelkel ◽  
J. T. Reeves

Recent studies have shown that vasodilator prostaglandins are continually produced by the isolated rat lung. We postulated that these vasodilators may contribute to maintenance of normal low pulmonary arterial pressure. Pulmonary pressure and cardiac output were measured in conscious dogs prior to and 30 to 60 min following administration of meclofenamate (2 mg/kg iv, followed by infusion at 2 mg . kg-1 . h-1) or the structurally dissimilar inhibitor RO–20–5720 (1 mg/kg iv, followed by infusion at 1 mg . kg-1 . h-1). The animals were also made hypoxic with inhalation of 10% O2 before and after inhibition. Time-control experiments were conducted in which only the saline vehicle was administered. Meclofenamate or RO–20–5720 caused an increase in mean pulmonary arterial pressure and total pulmonary resistance. Cardiac output and systemic pressure were unaffected. The mild hypoxic pulmonary pressor response observed was not affected by meclofenamate. Animals breathing 30% O2 to offset Denver's altitude also demonstrated increased pulmonary pressure and resistance when given meclofenamate. It is concluded that endogenous vasodilator prostaglandins may contribute to normal, low vascular tone in the pulmonary circulation.


Sign in / Sign up

Export Citation Format

Share Document