Increased DNA fragmentation and altered apoptotic protein levels in skeletal muscle of spontaneously hypertensive rats

2006 ◽  
Vol 101 (4) ◽  
pp. 1149-1161 ◽  
Author(s):  
Joe Quadrilatero ◽  
James W. E. Rush

Apoptosis is a highly conserved process that plays an important role in controlling tissue development, homeostasis, and architecture. Dysregulation of apoptosis is a hallmark of numerous human pathologies including hypertension. In the present work we studied the effect of hypertension on apoptosis and the expression of several apoptotic signaling and/or regulatory proteins in four functionally and metabolically distinct muscles. Specifically, we examined these markers in soleus, red gastrocnemius, white gastrocnemius, and left ventricle (LV) of 20-wk-old normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Compared with WKY rats SHR had a significantly greater heart weight, LV weight, and mean arterial pressure. In general, SHR skeletal muscle had increased Bax protein, procaspase-3 protein, caspase-3 activity, cleaved poly(ADP-ribose) polymerase protein, and DNA fragmentation as well as decreased Bcl-2 protein and a lower Bcl-2-to-Bax ratio. Subcellular distribution studies demonstrated increased levels of apoptosis-inducing factor protein in cytosolic or nuclear extracts as well as elevated nuclear Bax protein in SHR skeletal muscle. Moreover, heat shock protein 70 in red gastrocnemius and soleus was significantly correlated to several apoptotic factors. With the exception of lower heat shock protein 90 levels in SHR no additional differences in any apoptotic markers were observed in LV between groups. Collectively, this report provides the first evidence that apoptotic signaling is altered in skeletal muscle of hypertensive animals, an effect that may be mediated by both caspase-dependent and -independent mechanisms. This proapoptotic state may provide some understanding for the morphological and functional abnormalities observed in skeletal muscle of hypertensive animals.

2005 ◽  
Vol 25 (7) ◽  
pp. 878-886 ◽  
Author(s):  
Jin Zhou ◽  
Hiromichi Ando ◽  
Miroslava Macova ◽  
Jingtao Dou ◽  
Juan M Saavedra

Endothelial dysfunction and inflammation enhance vulnerability to hypertensive brain damage. To explore the participation of Angiotensin II (Ang II) in the mechanism of vulnerability to cerebral ischemia during hypertension, we examined the expression of inflammatory factors and the heat shock protein (HSP) response in cerebral microvessels from spontaneously hypertensive rats and their normotensive controls, Wistar Kyoto rats. We treated animals with vehicle or the Ang II AT1 receptor antagonist candesartan, 0.3 mg/kg/day, via subcutaneously implanted osmotic minipumps for 4 weeks. Spontaneously hypertensive rats expressed higher Angiotensin II AT1 receptor protein and mRNA than normotensive controls. Candesartan decreased the macrophage infiltration and reversed the enhanced tumor necrosis factor-α and interleukin-1β mRNA and nuclear factor-κB in microvessels in hypertensive rats. The transcription of many HSP family genes, including HSP60, HSP70 and HSP90, and heat shock factor-1 was higher in hypertensive rats and was downregulated by AT1 receptor blockade. Our results suggest a proinflammatory action of Ang II through AT1 receptor stimulation in cerebral microvessels during hypertension, and very potent antiinflammatory effects of the Ang II AT1 receptor antagonist. These compounds might be considered as potential therapeutic agents against ischemic and inflammatory diseases of the brain.


2005 ◽  
Vol 22 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Ulrika Hägg ◽  
Maria E. Johansson ◽  
Julia Grönros ◽  
Andrew S. Naylor ◽  
Ingibjörg H. Jonsdottir ◽  
...  

Physical exercise is considered to be beneficial for cardiovascular health. Nevertheless, the underlying specific molecular mechanisms still remain unexplored. In this study, we aimed to investigate the effects of voluntary exercise on vascular mechanical properties and gene regulation patterns in spontaneously hypertensive rats. By using ultrasound biomicroscopy in an ex vivo perfusion chamber, we studied the distensibility of the thoracic aorta. Furthermore, exercise-induced gene regulation was studied in aortae, using microarray analysis and validated with real-time PCR. We found that distensibility was significantly improved in aortas from exercising compared with control rats ( P < 0.0001). Exercising rats demonstrated a striking pattern of coordinated downregulation of genes belonging to the heat shock protein family. In conclusion, voluntary exercise leads to improved vessel wall distensibility and reduced gene expression of heat shock protein 60 and 70, which may indicate decreased oxidative stress in the aortic vascular wall.


Hypertension ◽  
1998 ◽  
Vol 32 (2) ◽  
pp. 280-286 ◽  
Author(s):  
María Antonia Fortuño ◽  
Susana Ravassa ◽  
Juan Carlos Etayo ◽  
Javier Díez

Sign in / Sign up

Export Citation Format

Share Document