The proportion of common synaptic input to motor neurons increases with an increase in net excitatory input

2015 ◽  
Vol 119 (11) ◽  
pp. 1337-1346 ◽  
Author(s):  
Anna Margherita Castronovo ◽  
Francesco Negro ◽  
Silvia Conforto ◽  
Dario Farina

α-Motor neurons receive synaptic inputs from spinal and supraspinal centers that comprise components either common to the motor neuron pool or independent. The input shared by motor neurons—common input—determines force control. The aim of the study was to investigate the changes in the strength of common synaptic input delivered to motor neurons with changes in force and with fatigue, two conditions that underlie an increase in the net excitatory drive to the motor neurons. High-density surface electromyogram (EMG) signals were recorded from the tibialis anterior muscle during contractions at 20, 50, and 75% of the maximal voluntary contraction force (in 3 sessions separated by at least 2 days), all sustained until task failure. EMG signal decomposition identified the activity of a total of 1,245 motor units. The coherence values between cumulative motor unit spike trains increased with increasing force, especially for low frequencies. This increase in coherence was not observed when comparing two subsets of motor units having different recruitment thresholds, but detected at the same force level. Moreover, the coherence values for frequencies <5 Hz increased at task failure with respect to the beginning of the contractions for all force levels. In conclusion, the results indicated that the relative strength of common synaptic input to motor neurons increases with respect to independent input when the net excitatory drive to motor neurons increases as a consequence of a change in force and fatigue.

2003 ◽  
Vol 95 (3) ◽  
pp. 1045-1054 ◽  
Author(s):  
C. J. Houtman ◽  
D. F. Stegeman ◽  
J. P. Van Dijk ◽  
M. J. Zwarts

To obtain more insight into the changes in mean muscle fiber conduction velocity (MFCV) during sustained isometric exercise at relatively low contraction levels, we performed an in-depth study of the human tibialis anterior muscle by using multichannel surface electromyogram. The results show an increase in MFCV after an initial decrease of MFCV at 30 or 40% maximum voluntary contraction in all of the five subjects studied. With a peak velocity analysis, we calculated the distribution of conduction velocities of action potentials in the bipolar electromyogram signal. It shows two populations of peak velocities occurring simultaneously halfway through the exercise. The MFCV pattern implies the recruitment of two different populations of motor units. Because of the lowering of MFCV of the first activated population of motor units, the newly recruited second population of motor units becomes visible. It is most likely that the MFCV pattern can be ascribed to the fatiguing of already recruited predominantly type I motor units, followed by the recruitment of fresh, predominantly type II, motor units.


Author(s):  
Eduardo Martinez-Valdes ◽  
Francesco Negro ◽  
Michail Arvanitidis ◽  
Dario Farina ◽  
Deborah Falla

At high forces, the discharge rates of lower and higher threshold motor units (MU) are influenced in a different way by muscle pain. These differential effects may be particularly important for performing contractions at different speeds since the proportion of lower and higher threshold MUs recruited varies with contraction velocity. We investigated whether MU discharge and recruitment strategies are differentially affected by pain depending on their recruitment threshold (RT), across a range of contraction speeds. Participants performed ankle dorsiflexion sinusoidal-isometric contractions at two frequencies (0.25Hz and 1Hz) and two modulation amplitudes [5% and 10% of the maximum voluntary contraction (MVC)] with a mean target torque of 20%MVC. High-density surface electromyography recordings from the tibialis anterior muscle were decomposed and the same MUs were tracked across painful (hypertonic saline injection) and non-painful conditions. Torque variability, mean discharge rate (MDR), DR variability (DRvar), RT and the delay between the cumulative spike train and the resultant torque output (neuromechanical delay, NMD) were assessed. The average RT was greater at faster contraction velocities (p=0.01) but was not affected by pain. At the fastest contraction speed, torque variability and DRvar were reduced (p<0.05) and MDR was maintained. Conversely, MDR decreased and DRvar and NMD increased significantly during pain at slow contraction speeds (p<0.05). These results show that reductions in contraction amplitude and increased recruitment of higher threshold MUs at fast contraction speeds appears to compensate for the inhibitory effect of nociceptive inputs on lower threshold MUs, allowing the exertion of fast submaximal contractions during pain.


2015 ◽  
Vol 113 (1) ◽  
pp. 182-191 ◽  
Author(s):  
Juan A. Gallego ◽  
Jakob L. Dideriksen ◽  
Ales Holobar ◽  
Jaime Ibáñez ◽  
José L. Pons ◽  
...  

Tremor in essential tremor (ET) is generated by pathological oscillations at 4–12 Hz, likely originating at cerebello-thalamo-cortical pathways. However, the way in which tremor is represented in the output of the spinal cord circuitries is largely unknown because of the difficulties in identifying the behavior of individual motor units from tremulous muscles. By using novel methods for the decomposition of multichannel surface EMG, we provide a systematic analysis of the discharge properties of motor units in nine ET patients, with concurrent recordings of EEG activity. This analysis allowed us to infer the contribution of common synaptic inputs to motor neurons in ET. Motor unit short-term synchronization was significantly greater in ET patients than in healthy subjects. Furthermore, the strong association between the degree of synchronization and the peak in coherence between motor unit spike trains at the tremor frequency indicated that the high synchronization levels were generated mainly by common synaptic inputs specifically at the tremor frequency. The coherence between EEG and motor unit spike trains demonstrated the presence of common cortical input to the motor neurons at the tremor frequency. Nonetheless, the strength of this input was uncorrelated to the net common synaptic input at the tremor frequency, suggesting a contribution of spinal afferents or secondary supraspinal pathways in projecting common input at the tremor frequency. These results provide the first systematic analysis of the neural drive to the muscle in ET and elucidate some of its characteristics that determine pathological tremulous muscle activity.


2005 ◽  
Vol 94 (2) ◽  
pp. 919-927 ◽  
Author(s):  
Mary Kay Floeter ◽  
Ping Zhai ◽  
Rajiv Saigal ◽  
Yongkyun Kim ◽  
Jeffrey Statland

Patients with corticospinal tract dysfunction have slow voluntary movements with brisk stretch reflexes and spasticity. Previous studies reported reduced firing rates of motor units during voluntary contraction. To assess whether this firing behavior occurs because motor neurons do not respond normally to excitatory inputs, we studied motor units in patients with primary lateral sclerosis, a degenerative syndrome of progressive spasticity. Firing rates were measured from motor units in the wrist extensor muscles at varying levels of voluntary contraction ≤10% maximal force. At each force level, the firing rate was measured with and without added muscle vibration, a maneuver that repetitively activates muscle spindles. In motor units from age-matched control subjects, the firing rate increased with successively stronger contractions as well as with the addition of vibration at each force level. In patients with primary lateral sclerosis, motor-unit firing rates remained stable, or in some cases declined, with progressively stronger contractions or with muscle vibration. We conclude that excitatory inputs produce a blunted response in motor neurons in patients with primary lateral sclerosis compared with age-matched controls. The potential explanations include abnormal activation of voltage-activated channels that produce stable membrane plateaus at low voltages, abnormal recruitment of the motor pool, or tonic inhibition of motor neurons.


2001 ◽  
Vol 86 (5) ◽  
pp. 2266-2275 ◽  
Author(s):  
Marc D. Binder ◽  
Randall K. Powers

Synchronized discharge of individual motor units is commonly observed in the muscles of human subjects performing voluntary contractions. The amount of this synchronization is thought to reflect the extent to which motoneurons in the same and related pools share common synaptic input. However, the relationship between the proportion of shared synaptic input and the strength of synchronization has never been measured directly. In this study, we simulated common shared synaptic input to cat spinal motoneurons by driving their discharge with noisy, injected current waveforms. Each motoneuron was stimulated with a number of different injected current waveforms, and a given pair of waveforms were either completely different or else shared a variable percentage of common elements. Cross-correlation histograms were then compiled between the discharge of motoneurons stimulated with noise waveforms with variable degrees of similarity. The strength of synchronization increased with the amount of simulated “common” input in a nonlinear fashion. Moreover, even when motoneurons had >90% of their simulated synaptic inputs in common, only ∼25–45% of their spikes were synchronized. We used a simple neuron model to explore how variations in neuron properties during repetitive discharge may lead to the low levels of synchronization we observed experimentally. We found that small variations in spike threshold and firing rate during repetitive discharge lead to large decreases in synchrony, particularly when neurons have a high degree of common input. Our results may aid in the interpretation of studies of motor unit synchrony in human hand muscles during voluntary contractions.


Motor Control ◽  
2016 ◽  
Vol 20 (1) ◽  
pp. 70-86 ◽  
Author(s):  
Matt S. Stock ◽  
Brennan J. Thompson

We examined the means, medians, and variability for motor-unit interpulse intervals (IPIs) during voluntary, high force contractions. Eight men (mean age = 22 years) attempted to perform isometric contractions at 90% of their maximal voluntary contraction force while bipolar surface electromyographic (EMG) signals were detected from the vastus lateralis and vastus medialis muscles. Surface EMG signal decomposition was used to determine the recruitment thresholds and IPIs of motor units that demonstrated accuracy levels ≥ 96.0%. Motor units with high recruitment thresholds demonstrated longer mean IPIs, but the coefficients of variation were similar across all recruitment thresholds. Polynomial regression analyses indicated that for both muscles, the relationship between the means and standard deviations of the IPIs was linear. The majority of IPI histograms were positively skewed. Although low-threshold motor units were associated with shorter IPIs, the variability among motor units with differing recruitment thresholds was comparable.


2010 ◽  
Vol 103 (3) ◽  
pp. 1295-1303 ◽  
Author(s):  
Esther Udina ◽  
Jessica D'Amico ◽  
Austin J. Bergquist ◽  
Monica A. Gorassini

Recruitment and repetitive firing of spinal motoneurons depend on the activation of persistent inward calcium and sodium currents (PICs) that are in turn facilitated by serotonin and norepinephrine that arise primarily from the brain stem. Considering that in rats motoneuron PICs are greatly facilitated by increasing the presynaptic release of norepinephrine with amphetamine, we sought similar evidence for the modulation of PICs in human motoneurons. Pairs of motor units were recorded during a gradually increasing and then decreasing voluntary contraction. The firing frequency ( F) of the lower-threshold (control) motor unit was used as an estimate of the synaptic input to the higher-threshold (test) motor unit. Generally, PICs are initiated during the recruitment of a motoneuron and subsequently provide a fixed depolarizing current that helps the synaptic input maintain firing until derecruitment. Thus the amplitude of the PIC in the test motor unit was estimated from the difference in synaptic input (Δ F) needed to maintain minimal firing once the PIC was fully activated (measured at the time of test unit derecruitment) compared with the larger synaptic input required to initiate firing prior to full PIC activation (measured at the time of test unit recruitment; Δ F = Frecruit − Fderecruit). Moreover, the activation time of the PIC was estimated as the minimal contraction duration needed to produce a maximal PIC (Δ F). In five subjects, oral administration of amphetamine, but not placebo, increased the Δ F by 62% [from 3.7 ± 0.6 to 6.0 ± 0.8 (SD) imp/s, P = 0.001] and decreased the time needed to activate a maximal Δ F from ∼2 to 0.5 s. Both findings suggest that the endogenous facilitation of PICs from brain stem derived norepinephrine plays an important role in modulating human motoneuron excitability, readying motoneurons for rapid and sustained activity during periods of high arousal such as stress or fear.


2012 ◽  
Vol 107 (11) ◽  
pp. 3078-3085 ◽  
Author(s):  
Jochen Schomacher ◽  
Jakob Lund Dideriksen ◽  
Dario Farina ◽  
Deborah Falla

This study investigated the behavior of motor units in the semispinalis cervicis muscle. Intramuscular EMG recordings were obtained unilaterally at levels C2 and C5 in 15 healthy volunteers (8 men, 7 women) who performed isometric neck extensions at 5%, 10%, and 20% of the maximal force [maximum voluntary contraction (MVC)] for 2 min each and linearly increasing force contractions from 0 to 30% MVC over 3 s. Individual motor unit action potentials were identified. The discharge rate and interspike interval variability of the motor units in the two locations did not differ. However, the recruitment threshold of motor units detected at C2 ( n = 16, mean ± SD: 10.3 ± 6.0% MVC) was greater than that of motor units detected at C5 ( n = 92, 6.9 ± 4.3% MVC) ( P < 0.01). A significant level of short-term synchronization was identified in 246 of 307 motor unit pairs when computed within one spinal level but only in 28 of 110 pairs of motor units between the two levels. The common input strength, which quantifies motor unit synchronization, was greater for pairs within one level (0.47 ± 0.32) compared with pairs between levels (0.09 ± 0.07) ( P < 0.05). In a second experiment on eight healthy subjects, interference EMG was recorded from the same locations during a linearly increasing force contraction from 0 to 40% MVC and showed significantly greater EMG amplitude at C5 than at C2. In conclusion, synaptic input is distributed partly independently and nonuniformly to different fascicles of the semispinalis cervicis muscle.


2017 ◽  
Vol 118 (4) ◽  
pp. 2238-2250 ◽  
Author(s):  
Daniel F. Feeney ◽  
François G. Meyer ◽  
Nicholas Noone ◽  
Roger M. Enoka

Motor neurons appear to be activated with a common input signal that modulates the discharge activity of all neurons in the motor nucleus. It has proven difficult for neurophysiologists to quantify the variability in a common input signal, but characterization of such a signal may improve our understanding of how the activation signal varies across motor tasks. Contemporary methods of quantifying the common input to motor neurons rely on compiling discrete action potentials into continuous time series, assuming the motor pool acts as a linear filter, and requiring signals to be of sufficient duration for frequency analysis. We introduce a space-state model in which the discharge activity of motor neurons is modeled as inhomogeneous Poisson processes and propose a method to quantify an abstract latent trajectory that represents the common input received by motor neurons. The approach also approximates the variation in synaptic noise in the common input signal. The model is validated with four data sets: a simulation of 120 motor units, a pair of integrate-and-fire neurons with a Renshaw cell providing inhibitory feedback, the discharge activity of 10 integrate-and-fire neurons, and the discharge times of concurrently active motor units during an isometric voluntary contraction. The simulations revealed that a latent state-space model is able to quantify the trajectory and variability of the common input signal across all four conditions. When compared with the cumulative spike train method of characterizing common input, the state-space approach was more sensitive to the details of the common input current and was less influenced by the duration of the signal. The state-space approach appears to be capable of detecting rather modest changes in common input signals across conditions. NEW & NOTEWORTHY We propose a state-space model that explicitly delineates a common input signal sent to motor neurons and the physiological noise inherent in synaptic signal transmission. This is the first application of a deterministic state-space model to represent the discharge characteristics of motor units during voluntary contractions.


2020 ◽  
Vol 16 (2) ◽  
pp. 14-23 ◽  
Author(s):  
A. Buniya ◽  
Ali H. Al-Timemy ◽  
A. Aldoori ◽  
Rami N. Khushaba

Recording an Electromyogram (EMG) signal is essential for diagnostic procedures like muscle health assessment and motor neurons control. The EMG signals have been used as a source of control for powered prosthetics to support people to accomplish their activities of daily living (ADLs). This work deals with studying different types of hand grips and finding their relationship with EMG activity. Five subjects carried out four functional movements (fine pinch, tripod grip and grip with the middle and thumb finger, as well as the power grip). Hand dynamometer has been used to record the EMG activity from three muscles namely; Flexor Carpi Radialis (FCR), Flexor Digitorum Superficialis (FDS), and Abductor Pollicis Brevis (ABP) with different levels of Maximum Voluntary Contraction (MVC) (10-100%). In order to analyze the collected EMG and force data, the mean absolute value of each trial is calculated followed by a calculation of the average of the 3 trials for each grip for each subject across the different MVC levels utilized in the study. Then, the mean and the standard deviation (SD) across all participants (3 males and 2 females) are calculated for FCR, FDS and APB muscles with multiple % MVC, i.e 10, 30, 50, 70 % MVC for each gesture. The results showed that APB muscle has the highest mean EMG activity across all grips, followed by FCR muscle. Furthermore, the grip with the thumb and middle fingers is the grip with the highest EMG activity for 10-70% MVC than the power grip. As for the 100% MVC, thumb and middle fingers grip achieved the highest EMG activity for APB muscle, while the power grip has the highest EMG activity for both FCR and FDS muscles.  


Sign in / Sign up

Export Citation Format

Share Document