scholarly journals Recruitment order of motor neurons promoted by epidural stimulation in individuals with spinal cord injury

Author(s):  
Jaime Ibáñez ◽  
Claudia A. Angeli ◽  
Susan J. Harkema ◽  
Dario Farina ◽  
Enrico Rejc

Spinal cord epidural stimulation (scES) combined with activity-based training can promote motor function recovery in individuals with motor complete spinal cord injury (SCI). The characteristics of motor neuron recruitment, which influence different aspects of motor control, are still unknown when motor function is promoted by scES. Here, we enrolled five individuals with chronic motor complete SCI implanted with a scES unit to study the recruitment order of motor neurons during standing enabled by scES. We recorded high-density electromyography (HD-EMG) signals on the vastus lateralis muscle, and inferred the order of recruitment of motor neurons from the relation between amplitude and conduction velocity of the scES-evoked EMG responses along the muscle fibers. Conduction velocity of scES-evoked responses was modulated over time, while stimulation parameters and standing condition remained constant, with average values ranging between 3.0±0.1 and 4.4±0.3 m/s. We found that the human spinal circuitry receiving epidural stimulation can promote both orderly (according to motor neuron size) and inverse trends of motor neuron recruitment, and that the engagement of spinal networks promoting rhythmic activity may favor orderly recruitment trends. Conversely, the different recruitment trends did not appear to be related with time since injury or scES implant, nor to the ability to achieve independent knees extension, nor to the conduction velocity values. The proposed approach can be implemented to investigate the effects of stimulation parameters and training-induced neural plasticity on the characteristics of motor neuron recruitment order, contributing to improve mechanistic understanding and effectiveness of epidural stimulation-promoted motor recovery after SCI.

2018 ◽  
Author(s):  
Mohammad Kachuee ◽  
Haydn Hoffman ◽  
Lisa D. Moore ◽  
Hamidreza Ghasemi Damavandi ◽  
Tali Homsey ◽  
...  

AbstractIn patients with chronic spinal cord injury (SCI), few therapies are available to improve neurological function. Neuromodulation of the spinal cord with epidural stimulation (EDS) has shown promise enabling the voluntary activation of motor pools caudal to the level of the injury. EDS is performed with multiple electrode arrays in which several stimulation variables such as the frequency, amplitude, and location of the stimulation significantly affect the type and amplitude of motor responses. This paper presents a novel technique to predict the final functionality of a patient with SCI after cervical EDS within a deep learning framework. Additionally, we suggest a committee-based active learning method to reduce the number of clinical experiments required to optimize EDS stimulation variables by exploring the stimulation configuration space more efficiently. We also developed a novel method to dynamically weight the results of different experiments using neural networks to create an optimal estimate of the quantity of interest. The essence of our approach was to use machine learning methods to predict the hand contraction force in a patient with chronic SCI based on different EDS parameters. The accuracy of the prediction of stimulation outcomes was evaluated based on three measurements: mean absolute error, standard deviation, and correlation coefficient. The results show that the proposed method can be used to reliably predict the outcome of cervical EDS on maximum voluntary contraction force of the hand with a prediction error of approximately 15%. This model could allow scientists to establish stimulation parameters more efficiently for SCI patients to produce enhanced motor responses in this novel application.Author SummarySpinal cord injury (SCI) can lead to permanent sensorimotor deficits that have a major impact on quality of life. In patients with a motor complete injury, there is no therapy available to reliably improve motor function. Recently, neuromodulation of the spinal cord with epidural stimulation (EDS) has allowed patients with motor-complete SCI regain voluntary movement below the level of injury in the cervical and thoracic spine. EDS is performed using multi-electrode arrays placed in the dorsal epidural space spanning several spinal segments. There are numerous stimulation parameters that can be modified to produce different effects on motor function. Previously, defining these parameters was based on observation and empiric testing, which are time-consuming and inefficient processes. There is a need for an automated method to predict motor and sensory function based on a given combination of EDS settings. We developed a novel method to predict the gripping function of a patient with SCI undergoing cervical EDS based on a set of stimulation parameters within a deep learning framework. We also addressed a limiting factor in machine learning methods in EDS, which is a general lack of training measurements for the learning model. We proposed a novel active learning method to minimize the number of training measurements required. The model for predicting responses to EDS could be used by scientists and clinicians to efficiently determine a set of stimulation parameters that produce a desired effect on motor function.


2016 ◽  
Vol 13 (2) ◽  
pp. 284-294 ◽  
Author(s):  
Karen Minassian ◽  
W. Barry McKay ◽  
Heinrich Binder ◽  
Ursula S. Hofstoetter

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael D. Sunshine ◽  
Antonino M. Cassarà ◽  
Esra Neufeld ◽  
Nir Grossman ◽  
Thomas H. Mareci ◽  
...  

AbstractRespiratory insufficiency is a leading cause of death due to drug overdose or neuromuscular disease. We hypothesized that a stimulation paradigm using temporal interference (TI) could restore breathing in such conditions. Following opioid overdose in rats, two high frequency (5000 Hz and 5001 Hz), low amplitude waveforms delivered via intramuscular wires in the neck immediately activated the diaphragm and restored ventilation in phase with waveform offset (1 Hz or 60 breaths/min). Following cervical spinal cord injury (SCI), TI stimulation via dorsally placed epidural electrodes uni- or bilaterally activated the diaphragm depending on current and electrode position. In silico modeling indicated that an interferential signal in the ventral spinal cord predicted the evoked response (left versus right diaphragm) and current-ratio-based steering. We conclude that TI stimulation can activate spinal motor neurons after SCI and prevent fatal apnea during drug overdose by restoring ventilation with minimally invasive electrodes.


2021 ◽  
pp. 096032712110033
Author(s):  
Liying Fan ◽  
Jun Dong ◽  
Xijing He ◽  
Chun Zhang ◽  
Ting Zhang

Spinal cord injury (SCI) is one of the most common destructive injuries, which may lead to permanent neurological dysfunction. Currently, transplantation of bone marrow mesenchymal stem cells (BMSCs) in experimental models of SCI shows promise as effective therapies. BMSCs secrete various factors that can regulate the microenvironment, which is called paracrine effect. Among these paracrine substances, exosomes are considered to be the most valuable therapeutic factors. Our study found that BMSCs-derived exosomes therapy attenuated cell apoptosis and inflammation response in the injured spinal cord tissues. In in vitro studies, BMSCs-derived exosomes significantly inhibited lipopolysaccharide (LPS)-induced PC12 cell apoptosis, reduced the secretion of pro-inflammatory factors including tumor necrosis factor (TNF)-α and IL (interleukin)-1β and promoted the secretion of anti-inflammatory factors including IL-10 and IL-4. Moreover, we found that LPS-induced protein expression of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88) and nuclear transcription factor-κB (NF-κB) was significantly downregulated after treatment with BMSCs-derived exosomes. In in vivo studies, we found that hindlimb motor function was significantly improved in SCI rats with systemic administration of BMSCs-derived exosomes. We also observed that the expression of pro-apoptotic proteins and pro-inflammatory factors was significantly decreased, while the expression of anti-apoptotic proteins and anti-inflammatory factors were upregulated in SCI rats after exosome treatment. In conclusion, BMSCs-derived exosomes can inhibit apoptosis and inflammation response induced by injury and promote motor function recovery by inhibiting the TLR4/MyD88/NF-κB signaling pathway, which suggests that BMSCs-derived exosomes are expected to become a new therapeutic strategy for SCI.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jing Li ◽  
Heyangzi Li ◽  
Simin Cai ◽  
Shi Bai ◽  
Huabo Cai ◽  
...  

Abstract Background Recent studies demonstrated that autologous mitochondria derived from bone marrow mesenchymal stem cells (BMSCs) might be valuable in the treatment of spinal cord injury (SCI). However, the mechanisms of mitochondrial transfer from BMSCs to injured neurons are not fully understood. Methods We modified BMSCs by CD157, a cell surface molecule as a potential regulator mitochondria transfer, then transplanted to SCI rats and co-cultured with OGD injured VSC4.1 motor neuron. We detected extracellular mitochondrial particles derived from BMSCs by transmission electron microscope and measured the CD157/cyclic ADP-ribose signaling pathway-related protein expression by immunohistochemistry and Western blotting assay. The CD157 ADPR-cyclase activity and Fluo-4 AM was used to detect the Ca2+ signal. All data were expressed as mean ± SEM. Statistical analysis was analyzed by GraphPad Prism 6 software. Unpaired t-test was used for the analysis of two groups. Multiple comparisons were evaluated by one-way ANOVA or two-way ANOVA. Results CD157 on BMSCs was upregulated when co-cultured with injured VSC4.1 motor neurons. Upregulation of CD157 on BMSCs could raise the transfer extracellular mitochondria particles to VSC4.1 motor neurons, gradually regenerate the axon of VSC4.1 motor neuron and reduce the cell apoptosis. Transplantation of CD157-modified BMSCs at the injured sites could significantly improve the functional recovery, axon regeneration, and neuron apoptosis in SCI rats. The level of Ca2+ in CD157-modified BMSCs dramatically increased when objected to high concentration cADPR, ATP content, and MMP of BMSCs also increased. Conclusion The present results suggested that CD157 can regulate the production and transfer of BMSC-derived extracellular mitochondrial particles, enriching the mechanism of the extracellular mitochondrial transfer in BMSCs transplantation and providing a novel strategy to improve the stem cell treatment on SCI.


Sign in / Sign up

Export Citation Format

Share Document