scholarly journals Effects of triceps surae muscle strength and tendon stiffness on the reactive dynamic stability and adaptability of older female adults during perturbed walking

2018 ◽  
Vol 124 (6) ◽  
pp. 1541-1549 ◽  
Author(s):  
Gaspar Epro ◽  
Christopher McCrum ◽  
Andreas Mierau ◽  
Michael Leyendecker ◽  
Gert-Peter Brüggemann ◽  
...  

This study aimed to examine whether the triceps surae (TS) muscle-tendon unit (MTU) mechanical properties affect gait stability and its reactive adaptation potential to repeated perturbation exposure in older adults. Thirty-four older adults each experienced eight separate unexpected perturbations during treadmill walking, while a motion capture system was used to determine the margin of stability (MoS) and base of support (BoS). Ankle plantar flexor muscle strength and Achilles tendon (AT) stiffness were analyzed using ultrasonography and dynamometry. A median split and separation boundaries classified the subjects into two groups with GroupStrong ( n = 10) showing higher ankle plantar flexor muscle strength (2.26 ± 0.17 vs. 1.47 ± 0.20 N·m/kg, means ± SD; P < 0.001) and AT stiffness (544 ± 75 vs. 429 ± 86 N/mm; P = 0.004) than GroupWeak ( n = 12). The first perturbation caused a negative ΔMoS (MoS in relation to unperturbed baseline walking) at touchdown of perturbed step (PertR), indicating an unstable position. GroupStrong required four recovery steps to return to ΔMoS zero level, whereas GroupWeak was unable to return to baseline within the analyzed steps. However, after repeated perturbations, both groups increased ΔMoS at touchdown of PertR with a similar magnitude. Significant correlations between ΔBoS and ΔMoS at touchdown of the first recovery step and TS MTU capacities (0.41 < r < 0.57; 0.006 < P < 0.048) were found. We conclude that older adults with TS muscle weakness have a diminished ability to control gait stability during unexpected perturbations, increasing their fall risk, but that degeneration in muscle strength and tendon stiffness may not inhibit the ability of the locomotor system to adapt the reactive motor response to repeated perturbations. NEW & NOTEWORTHY Triceps surae muscle weakness and a more compliant Achilles tendon partly limit older adults’ ability to effectively enlarge the base of support and recover dynamic stability after an unexpected perturbation during walking, increasing their fall risk. However, the degeneration in muscle strength and tendon stiffness may not inhibit the ability of the locomotor system to adapt the reactive motor response to repeated perturbations.

2020 ◽  
Vol 47 (4) ◽  
pp. 487-494
Author(s):  
Hyun-Ju Park ◽  
Nam-Gi Lee ◽  
Tae-Woo Kang

BACKGROUND: As the severity of dementia progresses over time, cognition and motor functions such as muscle strength, balance, and gait are disturbed, and they eventually increase the risk of fall in patients with dementia. OBJECTIVE: To determine the relationship between the fall risk and cognition, motor function, functional ability, and depression in older adults with dementia. METHODS: Seventy-four older adults diagnosed with dementia were recruited. Clinical measurements included the Fall Risk Scale by Huh (FSH), Korean version of the Mini-Mental State Examination (MMSE-K), hand grip strength (HGS), Tinetti Performance Oriented Mobility Assessment (POMA), 10-m walk test (10-MWT), Korean version of the Modified Barthel Index (MBI-K), and the Geriatric Depression Scale (GDS). RESUTLS: The MMSE-K was significantly correlated with the FSH, HGS, and the MBI-K, and FSH was significantly correlated with all of the other outcome measures. In particular, the MMSE-K, HGS, POMA, and the MBI-K were negatively correlated with fall history among the FHS sub-items. Additionally, the MMSE sub-item, attention/concentration was associated with the FSH, HGS, POMA, and the MBI-K. CONCLUSIONS: These findings suggest that falling is significantly related to impaired cognition, reduced muscle strength, impaired balance, gait, and activities of daily living abilities, and depression in older adults with dementia.


2020 ◽  
Vol 120 (12) ◽  
pp. 2715-2727
Author(s):  
Nikolaos Pentidis ◽  
Falk Mersmann ◽  
Sebastian Bohm ◽  
Erasmia Giannakou ◽  
Nickos Aggelousis ◽  
...  

Abstract Purpose Evidence on training-induced muscle hypertrophy during preadolescence is limited and inconsistent. Possible associations of muscle strength and tendon stiffness with jumping performance are also not investigated. We investigated the thickness and pennation angle of the gastrocnemius medialis muscle (GM), as indicators for potential muscle hypertrophy in preadolescent athletes. Further, we examined the association of triceps surae muscle–tendon properties with jumping performance. Methods Eleven untrained children (9 years) and 21 similar-aged artistic gymnastic athletes participated in the study. Muscle thickness and pennation angle of the GM were measured at rest and muscle strength of the plantar flexors and Achilles tendon stiffness during maximum isometric contractions. Jumping height in squat (SJ) and countermovement jumps (CMJ) was examined using a force plate. We evaluated the influence of normalised muscle strength and tendon stiffness on jumping performance with a linear regression model. Results Muscle thickness and pennation angle did not differ significantly between athletes and non-athletes. In athletes, muscle strength was greater by 25% and jumping heights by 36% (SJ) and 43% (CMJ), but Achilles tendon stiffness did not differ between the two groups. The significant predictor for both jump heights was tendon stiffness in athletes and normalised muscle strength for the CMJ height in non-athletes. Conclusion Long-term artistic gymnastics training during preadolescence seems to be associated with increased muscle strength and jumping performance but not with training-induced muscle hypertrophy or altered tendon stiffness in the plantar flexors. Athletes benefit more from tendon stiffness and non-athletes more from muscle strength for increased jumping performance.


2016 ◽  
Vol Volume 11 ◽  
pp. 1661-1674 ◽  
Author(s):  
Helô André ◽  
Filomena Carnide ◽  
Edgar Borja ◽  
Fátima Ramalho ◽  
Rita Santos-Rocha ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247885
Author(s):  
David Hernández-Guillén ◽  
Catalina Tolsada-Velasco ◽  
Sergio Roig-Casasús ◽  
Elena Costa-Moreno ◽  
Irene Borja-de-Fuentes ◽  
...  

Background and purpose Ankle function declines with age. The objective of this study was to investigate the association between ankle function and balance in older adults, with a focus on range of motion (ROM) and strength. Methods This was a cross-sectional study that included 88 healthy community-dwelling older adults. Ankle mobility was measured while bearing weight (lunge test) and not bearing weight. The plantar-flexor muscle strength was assessed using a hand-held dynamometer. Balance was measured in terms of dynamic balance and mobility (timed up and go test), monopodal and bipodal static balance with open and closed eyes (single-leg stand test and platform measures), and margins of stability (functional reach test). Linear correlation and multiple regression analyses were conducted with a 95% CI. Results and discussion Most participants had limited ankle mobility (n = 75, 86%). Weight-bearing ankle dorsiflexion ROM was the strongest predictor of dynamic balance and included general mobility and stability (Radj2 = [0.34]; β = [-0.50]). In contrast, plantar-flexor muscle strength was a significant predictor of static standing balance with open eyes (Radj2 = [0.16–0.2]; β = [0.29–0.34]). Overall, weight-bearing ankle dorsiflexion ROM was a more representative measure of balance and functional performance; however, a non-weight-bearing mobility assessment provides complementary information. Therefore, both measures can be used in clinical practice. Conclusion This study supports the concept that ankle mobility contributes to the performance of dynamic tasks, while the plantar-flexor muscle strength helps to develop a standing static balance. Identification of alterations in ankle function is warranted and may assist in the design of tailored interventions. These interventions can be used in isolation or to augment conventional balance training in order to improve balance performance in community-dwelling older adults.


2020 ◽  
Vol 11 ◽  
Author(s):  
Kiros Karamanidis ◽  
Gaspar Epro

Differences in muscle and tendon responsiveness to mechanical stimuli and time courses of adaptive changes may disrupt the interaction of the musculotendinous unit (MTU), increasing the risk for overuse injuries. We monitored training-induced alterations in muscle and tendon biomechanical properties in elite jumpers over 4 years of athletic training to detect potential non-synchronized adaptations within the triceps surae MTU. A combined cross-sectional and longitudinal investigation over 4 years was conducted by analyzing triceps surae MTU mechanical properties in both legs via dynamometry and ultrasonography in 67 elite track and field jumpers and 24 age-matched controls. Fluctuations in muscle and tendon adaptive changes over time were quantified by calculating individual residuals. The cosine similarity of the relative changes of muscle strength and tendon stiffness between sessions served as a measure of uniformity of adaptive changes. Our cross-sectional study was unable to detect clear non-concurrent differences in muscle strength and tendon stiffness in elite jumpers. However, when considering the longitudinal data over several years of training most of the jumpers demonstrated greater fluctuations in muscle strength and tendon stiffness and hence tendon strain compared to controls, irrespective of training period (preparation vs. competition). Moreover, two monitored athletes with chronic Achilles tendinopathy showed in their affected limb lower uniformity in MTU adaptation as well as higher fluctuations in tendon strain over time. Habitual mechanical loading can affect the MTU uniformity in elite jumpers, leading to increased mechanical demand on the tendon over an athletic season and potentially increased risk for overuse injuries.


2020 ◽  
Vol 13 (6) ◽  
pp. 289-296 ◽  
Author(s):  
Ladda Thiamwong ◽  
Jeffrey R. Stout ◽  
Mary Lou Sole ◽  
Boon Peng Ng ◽  
Xin Yan ◽  
...  

2005 ◽  
Vol 13 (3) ◽  
pp. 266-275 ◽  
Author(s):  
Sean Clark ◽  
Peter W. Iltis ◽  
Crystal J. Anthony ◽  
Andrea Toews

Despite widespread use of the functional-reach (FR) and limits-of-stability (LOS) tests, comparisons of postural strategies and postural limits for these tests have not been previously reported. The purpose of this study was to compare postural strategies as determined by cross-correlation analyses of trunk and lower leg angular displacements and postural limits as assessed by maximum center-of-gravity (COG) excursions as older adults at low fall risk completed the FR and LOS tests. Fourteen older adults completed three FR and LOS trials while standing on a Balance Master® force platform. Results indicated that despite relatively similar instructions to reach or lean as far as possible without losing balance or altering the base of support, their performance differed with regard to postural strategies employed and maximum COG excursions produced. These findings suggest that because of differences in task constraints, FR and LOS tests should not be used interchangeably.


2010 ◽  
Vol 90 (1) ◽  
pp. 67-74 ◽  
Author(s):  
Manuel E. Hernandez ◽  
Allon Goldberg ◽  
Neil B. Alexander

Background Bending down and kneeling are fundamental tasks of daily living, yet nearly a quarter of older adults report having difficulty performing or being unable to perform these movements. Older adults with stooping, crouching, or kneeling (SCK) difficulty have demonstrated an increased fall risk. Strength (force-generating capacity) measures may be useful for determining both SCK difficulty and fall risk. Objective The purposes of this study were: (1) to examine muscle strength differences in older adults with and without SCK difficulty and (2) to examine the relative contributions of trunk and leg muscle strength to SCK difficulty. Design This was a cross-sectional observational study. Methods Community-dwelling older adults (age [X̅±SD]=75.5±6.0 years) with SCK difficulty (n=27) or without SCK difficulty (n=21) were tested for leg and trunk strength and functional mobility. Isometric strength at the trunk, hip, knee, and ankle also was normalized by body weight and height. Results Compared with older adults with no SCK difficulty, those with SCK difficulty had significant decreases in normalized trunk extensor, knee extensor, and ankle dorsiflexor and plantar-flexor strength. In 2 separate multivariate analyses, raw ankle plantar-flexor strength (odds ratio [OR]=0.97, 95% confidence interval [CI]=0.95–0.99) and normalized knee extensor strength (OR=0.61, 95% CI=0.44–0.82) were significantly associated with SCK difficulty. Stooping, crouching, and kneeling difficulty also correlated with measures of functional balance and falls. Limitations Although muscle groups that were key to rising from SCK were examined, there are other muscle groups that may contribute to safe SCK performance. Conclusions Decreased muscle strength, particularly when normalized for body size, predicts SCK difficulty. These data emphasize the importance of strength measurement at multiple levels in predicting self-reported functional impairment.


Author(s):  
Jiraporn Chittrakul ◽  
Penprapa Siviroj ◽  
Somporn Sungkarat ◽  
Ratana Sapbamrer

Effective interventions for indicated fall prevention are necessary for older adults with frailty. We aimed to determine the effectiveness of a Multi-system Physical Exercise (MPE) for fall prevention and Health-Related Quality of Life (HRQOL) in pre-frail older adults. This randomized control trial with allocation concealment included 72 adults aged 65 and above, identified as pre-frailty and with mild and moderate fall risk scores measured by the Physiological Profile Assessment (PPA). Randomly, using block randomization, participants were divided into two groups: an MPE group (n = 36) and a control group (n = 36). The intervention consisted mainly of proprioception, muscle strengthening, reaction time, and balance training and was carried out three days per week for 12 weeks. The primary outcome was fall risk assessed using PPA at 12 weeks post-baseline and at a 24 week follow-up. Significant differences were found in the improvement in fall risk, proprioception, muscle strength, reaction time and postural sway, and fear of fall scores in the MPE group compared with controls at week 12 and 24. In addition, HRQOL had increased significantly in the MPE group in comparison to controls. The MPE program significantly increased muscle strength and improved proprioception, reaction time, and postural sway leading to fall risk reduction in older adults with pre-frailty. Therefore, the MPE program is recommended for used in day-to-day primary care practice in the pre-frail population.


Sign in / Sign up

Export Citation Format

Share Document