Validation of the doubly labeled water method under low and high humidity to estimate metabolic rate and water flux in a tropical snake (Boiga irregularis)

2003 ◽  
Vol 95 (1) ◽  
pp. 184-191 ◽  
Author(s):  
Nancy L. Anderson ◽  
Thomas E. Hetherington ◽  
Joseph B. Williams

This study uses indirect calorimetry to assess the effects of humidity on the accuracy of the doubly labeled water (DLW) technique to predict metabolic rate and water flux in brown treesnakes ( Boiga irregularis). The DLW technique accurately predicted total water efflux in brown treesnakes under low-humidity conditions and found that the total number of water molecules exchanged with the environment under humid conditions was not significantly different than maximum net total evaporative water loss under low humidity conditions plus fecal water loss. Because of changes of total body water of >12%, the DLW technique overestimated metabolic rate by a factor of 2.2 under low-humidity conditions. Under high-humidity conditions, the DLW technique overestimated metabolic rate in brown treesnakes by a factor of 4.6. Researchers using the DLW technique in humid or moist environments should be cautious because this study indicates that DLW estimates of metabolic rate may be inflated when large amounts of water vapor are exchanged through the skin or respiratory passages.

1957 ◽  
Vol 190 (1) ◽  
pp. 139-141 ◽  
Author(s):  
W. Medway ◽  
M. R. Kare

The total evaporative water loss, total body water by the direct method and the basal metabolic rate were determined on domestic fowl at various stages of growth. The trials were conducted on a total of 440 birds. The combined respiratory and cutaneous water loss was high on the 1st day of life, dropped to a minimum between 1 and 2 weeks of age, rose sharply at 2–4 weeks of age, then gradually tapered off to the value observed in the adult. The total body water and the total body water on a fat-free basis was quite high on the 1st day of life, then gradually decreased to that of the adult. The basal metabolic rate was low on the 1st day, rose sharply to a maximum at 2–4 weeks of age and then gradually tapered off to that of the adult.


2001 ◽  
Vol 204 (13) ◽  
pp. 2301-2311 ◽  
Author(s):  
Joseph B. Williams ◽  
Stéphane Ostrowski ◽  
Eric Bedin ◽  
Khairi Ismail

SUMMARY We report on the energy expenditure and water flux, measured in the laboratory and in the field, of the Arabian oryx Oryx leucoryx, the largest desert ruminant for which measurements of the field metabolic rate of free-living individuals have been made using doubly labeled water. Prior to extirpation of this species in the wild in 1972, conservationists sequestered a number of individuals for captive breeding; in 1989, oryx were reintroduced in Saudi Arabia into Mahazat as-Sayd (2244km2). Apart from small pools of water available after rains, oryx do not have free-standing water available for drinking and therefore rely on grasses that they eat for preformed water intake as well as their energy needs. We tested whether oryx have a reduced fasting metabolic rate and total evaporative water loss (TEWL) in the laboratory, as do some other arid-adapted mammals, and whether oryx have high field metabolic rates (FMRs) and water influx rates (WIRs), as predicted by allometric equations for large arid-zone mammals. We measured FMR and WIR during the hot summer, when plant moisture content was low and ambient temperatures were high, and after winter rains, when the water content of grasses was high. For captive oryx that weighed 84.1kg, fasting metabolic rate averaged 8980kJday−1, 16.7% lower than predictions for Artiodactyla. Our own re-analysis of minimal metabolic rates among Artiodactyla yielded the equation: logV̇O2=−0.153+0.758logM, where V̇O2 is the rate of oxygen uptake in lh−1 and M is body mass in kg. Fasting metabolic rate of oryx was only 9.1% lower than predicted, suggesting that they do not have an unusually low metabolic rate. TEWL averaged 870.0mlday−1, 63.9% lower than predicted, a remarkably low value even compared with the camel, but the mechanisms that contribute to such low rates of water loss remain unresolved. For free-living oryx, FMR was 11076kJday−1 for animals with a mean body mass of 81.5kg during summer, whereas it was 22081kJday−1 for oryx in spring with a mean body mass of 89.0kg, values that were 48.6% and 90.4% of allometric predictions, respectively. During summer, WIR averaged 1310mlH2Oday−1, whereas in spring it was 3438mlH2Oday−1. Compared with allometric predictions, WIR was 76.9% lower than expected in summer and 43.6% lower in spring. We found no evidence to support the view that the WIR of large desert ungulates is higher than that of their mesic counterparts. On the basis of the WIR of the oryx averaged over the year and the water contents of plants in their diet, we estimated that an oryx consumes 858kg of dry matter per year.


Sign in / Sign up

Export Citation Format

Share Document