Seasonal variation in energy expenditure, water flux and food consumption of Arabian oryx Oryx leucoryx

2001 ◽  
Vol 204 (13) ◽  
pp. 2301-2311 ◽  
Author(s):  
Joseph B. Williams ◽  
Stéphane Ostrowski ◽  
Eric Bedin ◽  
Khairi Ismail

SUMMARY We report on the energy expenditure and water flux, measured in the laboratory and in the field, of the Arabian oryx Oryx leucoryx, the largest desert ruminant for which measurements of the field metabolic rate of free-living individuals have been made using doubly labeled water. Prior to extirpation of this species in the wild in 1972, conservationists sequestered a number of individuals for captive breeding; in 1989, oryx were reintroduced in Saudi Arabia into Mahazat as-Sayd (2244km2). Apart from small pools of water available after rains, oryx do not have free-standing water available for drinking and therefore rely on grasses that they eat for preformed water intake as well as their energy needs. We tested whether oryx have a reduced fasting metabolic rate and total evaporative water loss (TEWL) in the laboratory, as do some other arid-adapted mammals, and whether oryx have high field metabolic rates (FMRs) and water influx rates (WIRs), as predicted by allometric equations for large arid-zone mammals. We measured FMR and WIR during the hot summer, when plant moisture content was low and ambient temperatures were high, and after winter rains, when the water content of grasses was high. For captive oryx that weighed 84.1kg, fasting metabolic rate averaged 8980kJday−1, 16.7% lower than predictions for Artiodactyla. Our own re-analysis of minimal metabolic rates among Artiodactyla yielded the equation: logV̇O2=−0.153+0.758logM, where V̇O2 is the rate of oxygen uptake in lh−1 and M is body mass in kg. Fasting metabolic rate of oryx was only 9.1% lower than predicted, suggesting that they do not have an unusually low metabolic rate. TEWL averaged 870.0mlday−1, 63.9% lower than predicted, a remarkably low value even compared with the camel, but the mechanisms that contribute to such low rates of water loss remain unresolved. For free-living oryx, FMR was 11076kJday−1 for animals with a mean body mass of 81.5kg during summer, whereas it was 22081kJday−1 for oryx in spring with a mean body mass of 89.0kg, values that were 48.6% and 90.4% of allometric predictions, respectively. During summer, WIR averaged 1310mlH2Oday−1, whereas in spring it was 3438mlH2Oday−1. Compared with allometric predictions, WIR was 76.9% lower than expected in summer and 43.6% lower in spring. We found no evidence to support the view that the WIR of large desert ungulates is higher than that of their mesic counterparts. On the basis of the WIR of the oryx averaged over the year and the water contents of plants in their diet, we estimated that an oryx consumes 858kg of dry matter per year.

2000 ◽  
Vol 203 (20) ◽  
pp. 3153-3159 ◽  
Author(s):  
J.B. Williams ◽  
B.I. Tieleman

The ‘energy demand’ hypothesis for short-term adjustments in basal metabolic rate (BMR) posits that birds adjust the size of their internal organs relative to food intake, a correlate of energy demand. We tested this hypothesis on hoopoe larks (Alaemon alaudipes), inhabitants of the Arabian desert, by acclimating birds for 3 weeks at 15 degrees C and at 36 degrees C, then measuring their BMR and total evaporative water loss (TEWL). Thereafter, we determined the dry masses of their brain, heart, liver, kidney, stomach, intestine and muscles of the pectoral region. Although mean body mass did not differ initially between the two groups, after 3 weeks, birds in the 15 degrees C group had gained mass (44.1+/−6.5 g), whereas larks in the 36 degrees C group had maintained a constant mass (36.6+/−3.6 g; means +/− s.d., N=6). Birds in the 15 degrees C group had a mean BMR of 46.8+/−6.9 kJ day(−1), whereas birds in the 36 degrees C group had a BMR of 32.9+/−6.3 kJ day(−1), values that were significantly different when we controlled for differences in body mass. When measured at 35 degrees C, larks in the cold-exposure group had a TEWL of 3.55+/−0.60 g H(2)O day(−)(1), whereas TEWL for birds in the 36 degrees C group averaged 2.23+/−0.28 g H(2)O day(−1), a difference of 59.2%. Mass-independent TEWL differed significantly between groups. Larks in the 15 degrees C group had a significantly larger liver, kidney and intestine than larks in the 36 degrees C group. The total increase in organ mass contributed 14.3% towards the total mass increment in the cold exposure group. Increased food intake among larks in the cold group apparently resulted in enlargement of some of the internal organs, and the increase in mass of these organs required a higher rate of oxygen uptake to support them. As oxygen demands increased, larks apparently lost more evaporative water, but the relationship between increases in BMR and TEWL remains unresolved.


1996 ◽  
Vol 44 (2) ◽  
pp. 107 ◽  
Author(s):  
SJ Ambrose ◽  
SD Bradshaw ◽  
PC Withers ◽  
DP Murphy

The mean annual rainfall of Barrow Island, located about 90 km north of Onslow off the arid Western Australian coast, is 324 mm, 74% of which falls as cyclonic rain between February and May. Spinifexbirds captured in May 1992 had a mean body mass of 12.3 +/- 0.3 g and a total body water content (TBW) of 774 +/- 1.6%. In December 1992 the mean body mass was significantly lower (11.7 +/- 0.2 g; P < 0.05), despite a TBW of 73.4 +/- 1.0%. Spinifexbirds maintained water balance in both seasons, but water flux rates were significantly higher in May (P = 0.01). Respective influx and efflux rates in May were 0.70 +/- 0.30 and 0.72 +/- 0.03 mL (g day)(-1) compared with 0.60 +/- 0.04 and 0.57 +/- 0.04 mL (g day)(-1) in December. Field metabolic rates (FMRs), measured with doubly-labelled water ((3)HH(18)0), did not differ significantly between the two periods. The mean FMR in May was 6.8 +/- 0.6 mL CO2 (g h)(-1) compared with 7.2 +/- 0.9 mL CO2 (g h)(-1) in December, similar to rates predicted by Nagy and Peterson (1988) for a similar-sized passerine. The thermoneutral zone (TNZ) of spinifexbirds, determined by metabolic laboratory trials in December, extended from 30 to 39 degrees C. The standard metabolic rate (SMR) within the TNZ was 2.9 +/- 0.1 mL O-2 (g h)(-1), which is up to 20% lower than predicted values. Body temperature was maintained at 39.1 degrees C in the TNZ, but birds became hyperthermic at ambient temperatures (T(a)s) higher than 35 degrees C, with body temperatures reaching 44 degrees C. Wet thermal conductance and evaporative water loss increased markedly at T(a)s > 35 degrees C. The data suggest that spinifexbirds have limited physiological adaptations to desert conditions compared with some other arid-zone birds.


2012 ◽  
Vol 60 (1) ◽  
pp. 54 ◽  
Author(s):  
Sean Tomlinson ◽  
Philip C. Withers ◽  
Shane K. Maloney

Metabolic rate and evaporative water loss (EWL) were measured to quantify the thermoregulatory patterns of two dasyurids, the stripe-faced dunnart (Sminthopsis macroura) and the Ooldea dunnart (S. ooldea) during acute exposure to Ta between 10 and 35°C. S. macroura maintained consistent Tb across the Ta range, whereas S. ooldea was more thermolabile. The metabolic rate of both species decreased from Ta = 10°C to BMR at Ta = 30°C. Mass-adjusted BMR at Ta = 30°C was the same for the two species, but there was no common regression of metabolic rate below the thermoneutral zone (TNZ). There was no significant difference between the species in allometrically corrected EWL at Ta = 30°C. Total EWL increased significantly at Ta = 10 and 35°C compared with the TNZ for S. macroura, but was consistent across the Ta range for S. ooldea. At any Ta below the TNZ, S. macroura required more energy per gram of body mass than S. ooldea, and had a higher EWL at the lower critical Ta. By being thermolabile S. ooldea reduced its energetic requirements and water loss at low Ta. The more constant thermoregulatory strategy of S. macroura may allow it to exploit a broad climatic envelope, albeit at the cost of higher energetic and water requirements. Since S. ooldea does not expend as much energy and water on thermoregulation this may be a response to the very low productivity, ‘hyperarid’ conditions of its central Australian distribution.


1988 ◽  
Vol 36 (3) ◽  
pp. 293 ◽  
Author(s):  
KA Nagy ◽  
AK Lee ◽  
RW Martin ◽  
MR Fleming

Field metabolic rates (FMRs) and rates of water flux in free-ranging fat-tailed dunnarts, Sminthopsis crassicaudata, were measured during spring (late October) using doubly labelled water. Feeding rates were estimated on the basis of water and energy fluxes. FMRs averaged 68.7 kJ d-' in adults (mean body mass= 16.6 g), and were 29.2 kJ d-' in juveniles (6.1 g). These FMRs are 6.6 times basal metabolic rate (BMR), and are much higher than the hypothetical maxima of four to five times BMR. Other dasyurid marsupials also have high FMR/BMR ratios, but so does a small petaurid marsupial. S. crassicaudata consumed 80-90% of its body mass in arthropods each day. The diet of arthropods apparently provided enough water for the animals to maintain water balance without drinking during this study.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7885 ◽  
Author(s):  
Mohlamatsane Mokhatla ◽  
John Measey ◽  
Ben Smit

Temperature and water availability are two of the most important variables affecting all aspects of an anuran’s key physiological processes such as body temperature (Tb), evaporative water loss (EWL) and standard metabolic rate (SMR). Since anurans display pronounced sexual dimorphism, evidence suggests that these processes are further influenced by other factors such as vapour pressure deficit (VPD), sex and body mass (Mb). However, a limited number of studies have tested the generality of these results across a wide range of ecologically relevant ambient temperatures (Ta), while taking habitat use into account. Thus, the aim of this study was to investigate the role of Ta on Tb, whole-animal EWL and whole-animal SMR in three wild caught African anuran species with different ecological specialisations: the principally aquatic African clawed frog (Xenopus laevis), stream-breeding common river frog (Amietia delalandii), and the largely terrestrial raucous toad (Sclerophrys capensis). Experiments were conducted at a range of test temperatures (5–35 °C, at 5 °C increments). We found that VPD better predicted rates of EWL than Ta in two of the three species considered. Moreover, we found that Tb, whole-animal EWL and whole-animal SMR increased with increasing Ta, while Tb increased with increasing Mb in A. delalandii and S. capensis but not in X. laevis. Whole-animal SMR increased with increasing Mb in S. capensis only. We did not find any significant effect of VPD, Mb or sex on whole-animal EWL within species. Lastly, Mb did not influence Tb, whole-animal SMR and EWL in the principally aquatic X. laevis. These results suggest that Mb may not have the same effect on key physiological variables, and that the influence of Mb may also depend on the species ecological specialisation. Thus, the generality of Mb as an important factor should be taken in the context of both physiology and species habitat specialisation.


2003 ◽  
Vol 95 (1) ◽  
pp. 184-191 ◽  
Author(s):  
Nancy L. Anderson ◽  
Thomas E. Hetherington ◽  
Joseph B. Williams

This study uses indirect calorimetry to assess the effects of humidity on the accuracy of the doubly labeled water (DLW) technique to predict metabolic rate and water flux in brown treesnakes ( Boiga irregularis). The DLW technique accurately predicted total water efflux in brown treesnakes under low-humidity conditions and found that the total number of water molecules exchanged with the environment under humid conditions was not significantly different than maximum net total evaporative water loss under low humidity conditions plus fecal water loss. Because of changes of total body water of >12%, the DLW technique overestimated metabolic rate by a factor of 2.2 under low-humidity conditions. Under high-humidity conditions, the DLW technique overestimated metabolic rate in brown treesnakes by a factor of 4.6. Researchers using the DLW technique in humid or moist environments should be cautious because this study indicates that DLW estimates of metabolic rate may be inflated when large amounts of water vapor are exchanged through the skin or respiratory passages.


1991 ◽  
Vol 39 (2) ◽  
pp. 131 ◽  
Author(s):  
JB Williams ◽  
PC Withers ◽  
SD Bradshaw ◽  
KA Nagy

Occupation of desert environments often requires evolutionary specialisations that minimise food and water requirements. One physiological adjustment to living in a hot, dry climate that has been found in several laboratory studies of birds is a reduced basal metabolic rate (BMR), which often translates into a diminished rate of evaporative water loss (EWL). In free-living birds, these physiological traits are thought to result in a lower field metabolic rate and water flux. We studied metabolism and water flux of a number of species of Australian parrots, both in the laboratory and in the field. After combining our laboratory data with values from the literature, we performed allometric analyses to search for evolutionary specialisation in metabolism and water flux in desert-adapted parrots. Our data do not support the idea that parrots living in arid environments have a reduced BMR. Field metabolic rates of parrots from western Australia were indistinguishable from those of other nonpasserine birds. Laboratory EWL was significantly lower for parrots living in desert environments than for those occupying more mesic habitats, and often lower than that expected from body size. Some species of parrots that live in desert regions of Australia have evolved mechanisms that reduce EWL, but this does not involve a reduction in BMR. In the field, parrots living in Western Australia had a lower water influx than predicted for nonpasserines, but this did not approach the value often found in other desert-adapted species. Values for the water economy index (water flux in free-living animals relative to their energy metabolism) were among the lowest that have been reported for desert-adapted birds.


1978 ◽  
Vol 35 (6) ◽  
pp. 816-821 ◽  
Author(s):  
J. R. Brett ◽  
J. M. Blackburn

The metabolic rate of spiny dogfish, Squalus acanthias, was determined in both a tunnel respirometer and a large, covered, circular tank (mass respirometer). Swimming performance was very poor in the respirometer, so that a power–performance curve could not be established. Instead, resting metabolic rates were determined, with higher rates induced by causing heavy thrashing (active metabolism). Routine metabolic rates were measured for the spontaneous activity characterizing behavior in the circular tank. For fish of 2 kg mean weight, the metabolic rates at 10 °C were 32.4 ± 2.6 SE (resting), 49.2 ± 5.0 SE (routine), and 88.4 ± 4.6 SE (active) mg O2∙kg−1∙h−1. Assuming that the routine rate represents a general energy expenditure in nature, this is equivalent to metabolizing about 3.8 kcal∙kg−1∙d−1 (15.9 × 103 J∙kg−1∙d−1). Key words: dogfish, metabolic rates, energetics, respiration


Rangifer ◽  
2000 ◽  
Vol 20 (2-3) ◽  
pp. 211 ◽  
Author(s):  
Geir Gotaas ◽  
Eric Milne ◽  
Paul Haggarty ◽  
Nicholas J.C. Tyler

The doubly labelled water (DLW) method was used to measure total energy expenditure (TEE) in three male reindeer (Rangifer tarandus tarandus) aged 22 months in winter (February) while the animals were living unrestricted at natural mountain pasture in northern Norway (69&deg;20'N). The concentrations of 2H and l8O were measured in water extracted from samples of faeces collecred from the animals 0.4 and 11.2 days after injection of the isotopes. Calculated rates of water flux and CO2-production were adjusted to compensate for estimated losses of 2H in faecal solids and in methane produced by microbial fermentation of forage in the rumen. The mean specific TEE in the three animals was 3.057 W.kg-1 (range 2.436 - 3.728 W.kg1). This value is 64% higher than TEE measured by the DLW method in four captive, non-pregnant adult female reindeer in winter and probably mainly reflects higher levels of locomotor activity in the free-living animals. Previous estimates of TEE in free-living Rangifer in winter based on factorial models range from 3.038 W.kg-1 in female woodland caribou (R. t. caribou) to 1.813 W.kg-1 in female Svalbard reindeer (R. t. platyrhynchus). Thus, it seems that existing factorial models are unlikely to overestimate TEE in reindeer/caribou: they may, instead, be unduly conservative. While the present study serves as a general validation of the factorial approach, we suggest that the route to progress in the understanding of field energetics in wild ungulates is via application of the DLW method.


Sign in / Sign up

Export Citation Format

Share Document