scholarly journals Acute inorganic nitrate supplementation and the hypoxic ventilatory response in patients with obstructive sleep apnea

Author(s):  
Joshua M. Bock ◽  
Brady E. Hanson ◽  
Thomas F. Asama ◽  
Andrew J. Feider ◽  
Satoshi Hanada ◽  
...  

Patients with obstructive sleep apnea (OSA) have increased cardiovascular disease risk largely attributable to hypertension. Heightened peripheral chemoreflex sensitivity (i.e., exaggerated responsiveness to hypoxia) facilitates hypertension in these patients. Nitric oxide blunts the peripheral chemoreflex and patients with OSA have reduced nitric oxide bioavailability. We therefore investigated the dose-dependent effects of acute inorganic nitrate supplementation (beetroot juice), an exogenous nitric oxide source, on blood pressure and cardiopulmonary responses to hypoxia in patients with OSA using a randomized, double-blind, placebo-controlled crossover design. Fourteen patients with OSA (53±10years, 29.2±5.8kg/m2, apnea-hypopnea index=17.8±8.1, 43%F) completed three visits. Resting brachial blood pressure, as well as cardiopulmonary responses to inspiratory hypoxia, were measured before, and two hours after, acute inorganic nitrate supplementation (~0.10mmol [placebo], 4.03mmol [low-dose], and 8.06mmol [high-dose]). Placebo did not increase either plasma [nitrate] (30±52 to 52±23μM, P=0.26) or [nitrite] (266±153 to 277±164nM, P=0.21); however, both increased following low-(29±17 to 175±42μM, 220±137 to 514±352nM) and high-doses (26±11 to 292±90μM, 248±155 to 738±427nM, respectively, P<0.01 for all). Following placebo, systolic blood pressure increased (120±9 to128±10mmHg, P<0.05) whereas no changes were observed following low-(121±11 to 123±8mmHg, P=0.19) or high-dose (124±13 to 124±9mmHg, P=0.96). The peak ventilatory response to hypoxia increased following placebo (3.1±1.2 to 4.4±2.6L/min, P<0.01) but not low-(4.4±2.4 to 5.4±3.4L/min, P=0.11) or high-doses (4.3±2.3 to 4.8±2.7L/min, P=0.42). Inorganic nitrate did not change the heart rate responses to hypoxia (beverage-by-time P=0.64). Acute inorganic nitrate supplementation appears to blunt an early-morning rise in systolic blood pressure potentially through suppression of peripheral chemoreflex sensitivity in patients with OSA.

2018 ◽  
Vol 314 (1) ◽  
pp. H45-H51 ◽  
Author(s):  
Joshua M. Bock ◽  
Kenichi Ueda ◽  
Aaron C. Schneider ◽  
William E. Hughes ◽  
Jacqueline K. Limberg ◽  
...  

Aging is associated with increased peripheral chemoreceptor activity, reduced nitric oxide (NO) bioavailability, and attenuation of cardiovagal baroreflex sensitivity (BRS), collectively increasing the risk of cardiovascular disease. Evidence suggests that NO may attenuate peripheral chemoreflex sensitivity and increase BRS. Exogenous inorganic nitrate ([Formula: see text]) increases NO bioavailability via the [Formula: see text]-[Formula: see text]-NO pathway. Our hypothesis was that inorganic [Formula: see text] supplementation would attenuate peripheral chemoreflex sensitivity and enhance spontaneous cardiovagal BRS in older adults. We used a randomized, placebo-controlled crossover design in which 13 older (67 ± 3 yr old) adults ingested beetroot powder containing (BRA) or devoid of (BRP) [Formula: see text] and [Formula: see text] daily over 4 wk. Spontaneous cardiovagal BRS was assessed over 15 min of rest and was quantified using the sequence method. Chemoreflex sensitivity was assessed via ~5 min of hypoxia (10% fraction of inspired O2) and reported as the slope of the relationship between O2 saturation (%[Formula: see text]) and minute ventilation (in l/min) or heart rate (in beats/min). Ventilatory responsiveness to hypoxia was reduced after BRA (from −0.14 ± 0.04 to −0.05 ± 0.02 l·min−1·%[Formula: see text]−1, P = 0.01) versus BRP (from −0.10 ± 0.05 to −0.11 ± 0.05 l·min−1·%[Formula: see text]−1, P = 0.80), with no differences in heart rate responsiveness (BRA: from −0.47 ± 0.06 to −0.33 ± 0.04 beats·min−1·%[Formula: see text]−1, BRP: from −0.48 ± 0.07 to −0.42 ± 0.06 beats·min−1·%[Formula: see text]−1) between conditions (interaction effect, P = 0.41). Spontaneous cardiovagal BRS was unchanged after BRA and BRP (interaction effects, P = 0.69, 0.94, and 0.39 for all, up, and down sequences, respectively), despite a reduction in resting systolic and mean arterial blood pressure in the experimental (BRA) group ( P < 0.01 for both). These findings illustrate that inorganic [Formula: see text] supplementation attenuates peripheral chemoreflex sensitivity without concomitant change in spontaneous cardiovagal BRS in older adults. NEW & NOTEWORTHY Exogenous inorganic nitrate supplementation attenuates ventilatory, but not heart rate, responsiveness to abbreviated hypoxic exposure in older adults. Additionally, inorganic nitrate reduces systolic and mean arterial blood pressure without affecting spontaneous cardiovagal baroreflex sensitivity. These findings suggest that inorganic nitrate may attenuate sympathetically oriented pathologies associated with aging.


2008 ◽  
Vol 105 (1) ◽  
pp. 14-23 ◽  
Author(s):  
Yanfeng Ding ◽  
Yu-Long Li ◽  
Harold D. Schultz

Peripheral chemoreflex sensitivity is potentiated in clinical and experimental chronic heart failure (CHF). Downregulation of nitric oxide (NO) synthase (NOS) in the carotid body (CB) is involved in this effect. However, it remains poorly understood whether carbon monoxide (CO) also contributes to the altered peripheral chemoreflex sensitivity in CHF. This work highlights the effect of NO and CO on renal sympathetic nerve activity (RSNA) in response to graded hypoxia in conscious rabbits. Renal sympathetic nerve responses to graded hypoxia were enhanced in CHF rabbits compared with sham rabbits. The NO donor S-nitroso- N-acetylpenicillamine (SNAP, 1.2 μg·kg−1·min−1) and the CO-releasing molecule tricarbonyldichlororuthenium (II) dimer {[Ru(CO)3Cl2]2, 3.0 μg·kg−1·min−1} each attenuated hypoxia-induced RSNA increases in CHF rabbits ( P < 0.05), but the degree of attenuation of RSNA induced by SNAP or [Ru(CO)3Cl2]2 was smaller than that induced by SNAP + [Ru(CO)3Cl2]2. Conversely, treatment with the NOS inhibitor Nω-nitro-l-arginine (30 mg/kg) + the heme oxygenase (HO) inhibitor Cr (III) mesoporphyrin IX chloride (0.5 mg/kg) augmented the renal sympathetic nerve response to hypoxia in sham rabbits to a greater extent than treatment with either inhibitor alone and was without effect in CHF rabbits. In addition, using immunostaining and Western blot analyses, we found that expression of neuronal NOS, endothelial NOS, and HO-2 protein (expressed as the ratio of NOS or HO-2 expression to β-tubulin protein expression) was lower in CBs from CHF (0.19 ± 0.04, 0.17 ± 0.06, and 0.15 ± 0.02, respectively) than sham (0.63 ± 0.04, 0.56 ± 0.06, and 0.27 ± 0.03, respectively) rabbits ( P < 0.05). These results suggest that a deficiency of NO and CO in the CBs augments peripheral chemoreflex sensitivity to hypoxia in CHF.


2016 ◽  
Vol 14 (1) ◽  
pp. 78-88
Author(s):  
Alexander S Radchenko

The The last two decades there has been a growing interest in the nitric oxide (NO) function in the body of a healthy person. In the study, two very specific problems are discussed: a) the NO involvement in mechanisms of adaptation at muscular work under hypoxia conditions, and b) the inorganic nitrate supplementation in athlete’s diet with the aim of sports performance improvement. The reorganizations that occur in the heart vasculature and in skeletal muscle for providing muscle work under hypoxia conditions examined. The named problems are particularly relevant in contemporary sports in which the adding of hypoxic exposure on a body of training persons as well as the inorganic nitrate in sports nutrition application as added means to special performance improvement. Raise the problem of the hypoxia and inorganic nitrate mutual exploitation in the training process.


2017 ◽  
Vol 313 (1) ◽  
pp. H59-H65 ◽  
Author(s):  
Karambir Notay ◽  
Anthony V. Incognito ◽  
Philip J. Millar

Acute dietary nitrate ([Formula: see text]) supplementation reduces resting blood pressure in healthy normotensives. This response has been attributed to increased nitric oxide bioavailability and peripheral vasodilation, although nitric oxide also tonically inhibits central sympathetic outflow. We hypothesized that acute dietary [Formula: see text] supplementation using beetroot (BR) juice would reduce blood pressure and muscle sympathetic nerve activity (MSNA) at rest and during exercise. Fourteen participants (7 men and 7 women, age: 25 ± 10 yr) underwent blood pressure and MSNA measurements before and after (165–180 min) ingestion of 70ml high-[Formula: see text] (~6.4 mmol [Formula: see text]) BR or [Formula: see text]-depleted BR placebo (PL; ~0.0055 mmol [Formula: see text]) in a double-blind, randomized, crossover design. Blood pressure and MSNA were also collected during 2 min of static handgrip (30% maximal voluntary contraction). The changes in resting MSNA burst frequency (−3 ± 5 vs. 3 ± 4 bursts/min, P = 0.001) and burst incidence (−4 ± 7 vs. 4 ± 5 bursts/100 heart beats, P = 0.002) were lower after BR versus PL, whereas systolic blood pressure (−1 ± 5 vs. 2 ± 5 mmHg, P = 0.30) and diastolic blood pressure (4 ± 5 vs. 5 ± 7 mmHg, P = 0.68) as well as spontaneous arterial sympathetic baroreflex sensitivity ( P = 0.95) were not different. During static handgrip, the change in MSNA burst incidence (1 ± 8 vs. 8 ± 9 bursts/100 heart beats, P = 0.04) was lower after BR versus PL, whereas MSNA burst frequency (6 ± 6 vs. 11 ± 10 bursts/min, P = 0.11) as well as systolic blood pressure (11 ± 7 vs. 12 ± 8 mmHg, P = 0.94) and diastolic blood pressure (11 ± 4 vs. 11 ± 4 mmHg, P = 0.60) were not different. Collectively, these data provide proof of principle that acute BR supplementation can decrease central sympathetic outflow at rest and during exercise. Dietary [Formula: see text] supplementation may represent a novel intervention to target exaggerated sympathetic outflow in clinical populations. NEW & NOTEWORTHY The hemodynamic benefits of dietary nitrate supplementation have been attributed to nitric oxide-mediated peripheral vasodilation. Here, we provide proof of concept that acute dietary nitrate supplementation using beetroot juice can decrease muscle sympathetic outflow at rest and during exercise in a normotensive population. These results have applications for targeting central sympathetic overactivation in disease.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Maria Peleli ◽  
Christa Zollbrecht ◽  
Marcelo Montenegro ◽  
Michael Hezel ◽  
Eddie Weitzberg ◽  
...  

Xanthine oxidoreductase (XOR) is generally known as a source of superoxide production, but this enzyme has also been suggested to mediate NO production via reduction of inorganic nitrate (NO 3 - ) and nitrite(NO 2 - ). This pathway for NO generation is of particular importance during certain pathologies, whereas endothelial NO synthase (eNOS) is the primary source of vascular NO generation under normal physiological conditions. The exact interplay between the NOS and XOR-derived NO is not yet fully elucidated. The aim of the present study was to investigate if eNOS deficiency is partly compensated by XOR upregulation and sensitization of the NO 3 - - NO 2 - - NO pathway. NO 3 - and NO 2 - were similar between naïve eNOS KO and wildtype (wt) mice, but reduced upon chronic treatment with the non-selective NOS inhibitor L-NAME (wt: 25.0±5.2, eNOS KO: 39.2±6.4, L-NAME: 8.2±1.6 μ NO 3 - -, wt: 0.38±0.07, eNOS KO: 0.42±0.04, L-NAME: 0.12±0.02 μ NO 2 - ). XOR function was upregulated in eNOS KO compared with wt mice [(mRNA: wt 1±0.07, eNOS KO 1.38±0.17), (activity: wt 825±54, eNOS KO 1327±280 CLU/mg/min), (uric acid: wt 32.87±1.53, eNOS KO 43.23±3.54 μ)]. None of these markers of XOR activity was increased in nNOS KO and iNOS KO mice. Following acute dose of NO 3 - (10 mg/kg bw, i.p.), the increase of plasma NO 2 - was more pronounced in eNOS KO (+0.51±0.13 μ) compared with wt (+0.22±0.09 μ), and this augmented response in the eNOS KO was abolished by treatment with the highly selective XOR inhibitor febuxostat (FEB). Liver from eNOS KO had higher reducing capacity of NO 2 - to NO compared with wt, and this effect was attenuated by FEB (Δppb of NO: wt +8.7±4.2, eNOS KO +44.2±15.0, wt+FEB +22.2±9.6, eNOS KO+FEB +26.8±10.2). Treatment with FEB increased blood pressure in eNOS KO (ΔMAP:+10.2±5.6 mmHg), but had no effect in wt (ΔMAP:-0.6±3.3 mmHg). Supplementation with NO 3 - (10 mM, drinking water) reduced blood pressure in eNOS KO (ΔMAP: -6.3±2.2 mmHg), and this effect was abolished by FEB (ΔMAP: +1.1±1.9 mmHg). In conclusion, upregulated and altered XOR function in conditions with eNOS deficiency can facilitate the NO 3 - - NO 2 - - NO pathway and hence play a significant role in vascular NO homeostasis.


Author(s):  
Rupesh Dudhe ◽  
Anshu Chaudhary Dudhe ◽  
Shravan D. Raut

Background amp; Objectives: Nitric Oxide (NO) is frequently produced by the enzyme Nitric Oxide Synthase (NOS) and is crucial to the control and effective ness of the cardiovascular system. However, there is substantial reduction in NOS activity with aging that can lead to the development of hypertension and other cardiovascular obstacles. Fortunately, NO can also being produced by sequential reduction of inorganic nitrates supplementation. This proves that NO from inorganic nitrate supplements can provide compensation when NOS activity is inadequate and cardio protective benefits and beyond that provided by healthy NOS system. Discussion: This review focus on the general information about Nitrous oxide, types, mechanism of action of NO & overview of NOS activity is inadequate and cardio protective benefits and beyond that provided by healthy NOS system were often studied for cardiovascular treatments. Conclusion: We concluded that the Natural plant NO is the essential for cardiovascular activity to target site with desired concentration. Moreover, the researchers were focused on Evidence suggested that nitrate supplementation can help regulate blood pressure, limit progression of atherosclerosis, and improve myocardial contractility in both healthy individuals and those with cardiovascular disease.


2004 ◽  
Vol 287 (4) ◽  
pp. R878-R885 ◽  
Author(s):  
Patrick K. K. Leong ◽  
Li E. Yang ◽  
Harrison W. Lin ◽  
Niels H. Holstein-Rathlou ◽  
Alicia A. McDonough

Renal parathyroid hormone (PTH) action is often studied at high doses (100 μg PTH/kg) that lower mean arterial pressure significantly, albeit transiently, complicating interpretation of studies. Little is known about the effect of acute hypotension on proximal tubule Na+ transporters. This study aimed to determine the effects of acute hypotension, induced by aortic clamp or by high-dose PTH (100 μg PTH/kg), on renal hemodynamics and proximal tubule Na/H exchanger isoform 3 (NHE3) and type IIa Na-Pi cotransporter protein (NaPi2) distribution. Subcellular distribution was analyzed in renal cortical membranes fractionated on sorbitol density gradients. Aortic clamp-induced acute hypotension (from 100 ± 3 to 78 ± 2 mmHg) provoked a 62% decrease in urine output and a significant decrease in volume flow from the proximal tubule detected as a 66% decrease in endogenous lithium clearance. There was, however, no significant change in glomerular filtration rate (GFR) or subcellular distribution of NHE3 and NaPi2. In contrast, high-dose PTH rapidly (<2 min) decreased arterial blood pressure to 51 ± 3 mmHg, decreased urine output, and shifted NHE3 and NaPi2 out of the low-density membranes enriched in apical markers. PTH at much lower doses (<1.4 μg·kg−1·h−1) did not change blood pressure and was diuretic. In conclusion, acute hypotension per se increases proximal tubule Na+ reabsorption without changing NHE3 or NaPi2 subcellular distribution, indicating that trafficking of transporters to the surface is not the likely mechanism; in comparison, hypotension secondary to high-dose PTH blocks the primary diuretic effect of PTH but does not inhibit the PTH-stimulated redistribution of NHE3 and NaPi2 to the base of the microvilli.


1998 ◽  
Vol 9 (9) ◽  
pp. 1588-1595
Author(s):  
M I Madrid ◽  
M G Salom ◽  
J Tornel ◽  
E López ◽  
F J Fenoy

The present study examined the effect of renal denervation on the impairment of the pressure-diuresis response produced by nitric oxide synthesis blockade. The experiments were performed in Inactin-anesthetized Munich-Wistar rats. The animals with innervated kidneys had lower baseline values of renal blood flow, GFR, sodium excretion (UNaV), and urine flow (V) than rats with denervated kidneys. Also, renal denervation shifted pressure-diuresis and natriuresis toward lower pressures. A low dose of N(omega)-nitro-L-arginine methyl esther (NAME, 3.7 nmol/kg per min) reduced UNaV and the fractional excretion of sodium (FENa) and blunted pressure-natriuresis only in rats with innervated kidneys, whereas it had no effects in rats with denervated kidneys. A medium dose of NAME (37 nmol/kg per min) lowered FENa only in rats with innervated kidneys. The administration of NAME (37 nmol/kg per min) blunted pressure-diuresis and natriuresis in kidneys with or without the renal nerves, but the effect was more pronounced in rats with innervated kidneys. A high dose of NAME (3.7 micromol + 185 nmol/kg per min) increased UNaV and FENa only in rats with innervated kidneys, whereas it reduced GFR, V, UnaV, and FENa in rats with denervated kidneys. However, pressure-natriuresis and diuresis were blunted by this high dose of NAME independently of the presence or absence of renal nerves. These results demonstrate that renal nerves potentiate the renal effects of low doses of NAME on renal function and pressure-diuresis and natriuresis. However, high doses of NAME abolish pressure-diuresis independently of renal nerves, and the natriuretic effect of NAME in innervated kidneys may be attributed to reflex inhibition of sympathetic tone due to the rise in arterial pressure.


2019 ◽  
Vol 127 (1) ◽  
pp. 81-88 ◽  
Author(s):  
Christopher J. de Vries ◽  
Darren S. DeLorey

Dietary nitrate ([Formula: see text]) supplementation has been shown to reduce resting blood pressure. However, the mechanism responsible for the reduction in blood pressure has not been identified. Dietary [Formula: see text] supplementation may increase nitric oxide (NO) bioavailability, and NO has been shown to inhibit sympathetic vasoconstriction in resting and contracting skeletal muscle. Therefore, the purpose of this study was to investigate the hypothesis that acute dietary [Formula: see text] supplementation would attenuate sympathetic vasoconstrictor responsiveness at rest and during exercise. In a double-blind randomized crossover design, 12 men (23 ± 5 yr) performed a cold-pressor test (CPT) at rest and during moderate- and heavy-intensity alternate-leg knee-extension exercise after consumption of [Formula: see text] rich beetroot juice (~12.9 mmol [Formula: see text]) or a [Formula: see text]-depleted placebo (~0.13 mmol [Formula: see text]). Venous blood was sampled before and 2.5 h after the consumption of beetroot juice for the measurement of total plasma nitrite/[Formula: see text] [NOx]. Beat-by-beat blood pressure was measured by Finometer. Leg blood flow was measured at the femoral artery via Doppler ultrasound, and leg vascular conductance (LVC) was calculated. Sympathetic vasoconstrictor responsiveness was calculated as the percentage decrease in LVC in response to the CPT. Total plasma [NOx] was greater ( P < 0.001) in the [Formula: see text] (285 ± 120 µM) compared with the placebo (65 ± 30 µM) condition. However, mean arterial blood pressure and plasma catecholamines were not different ( P > 0.05) between [Formula: see text] and placebo conditions at rest or during moderate- and heavy-intensity exercise. Sympathetic vasoconstrictor responsiveness (Δ% LVC) was not different ( P > 0.05) between [Formula: see text] and placebo conditions at rest ([Formula: see text]: −33 ± 10%; placebo: −35 ± 11%) or during moderate ([Formula: see text]: −18 ± 8%; placebo: −20 ± 10%)- and heavy ([Formula: see text]: −12 ± 8%; placebo: −11 ± 9%)-intensity exercise. These data demonstrate that acute dietary [Formula: see text] supplementation does not alter sympathetic vasoconstrictor responsiveness at rest or during exercise in young healthy males. NEW & NOTEWORTHY Dietary nitrate may increase nitric oxide bioavailability, and nitric oxide has been shown to attenuate sympathetic vasoconstriction in resting and contracting skeletal muscle and enhance functional sympatholysis. However, the effect of dietary nitrate on sympathetic vasoconstrictor responsiveness is unknown. Acute dietary nitrate supplementation did not alter blood pressure or sympathetic vasoconstrictor responsiveness at rest or during exercise in young healthy males.


Sign in / Sign up

Export Citation Format

Share Document