Endothelium-dependent vasodilation of cerebral arteries is altered with simulated microgravity through nitric oxide synthase and EDHF mechanisms

2006 ◽  
Vol 101 (1) ◽  
pp. 348-353 ◽  
Author(s):  
Rhonda D. Prisby ◽  
M. Keith Wilkerson ◽  
Elke M. Sokoya ◽  
Robert M. Bryan ◽  
Emily Wilson ◽  
...  

Cephalic elevations in arterial pressure associated with microgravity and prolonged bed rest alter cerebrovascular autoregulation in humans. Using the head-down tail-suspended (HDT) rat to chronically induce headward fluid shifts and elevate cerebral artery pressure, previous work has likewise shown cerebral perfusion to be diminished. The purpose of this study was to test the hypothesis that 2 wk of HDT reduces cerebral artery vasodilation. To test this hypothesis, dose-response relations for endothelium-dependent (2-methylthioadenosine triphosphate and bradykinin) and endothelium-independent (nitroprusside) vasodilation were determined in vitro in middle cerebral arteries (MCAs) from HDT and control rats. All in vitro measurements were done in the presence and absence of the nitric oxide synthase inhibitor NG-nitro-l-arginine methyl ester (10−5 M) and cyclooxygenase inhibitor indomethacin (10−5 M). MCA caveolin-1 protein content was measured by immunoblot analysis. Endothelium-dependent vasodilation to 2-methylthioadenosine triphosphate and bradykinin were both lower in MCAs from HDT rats. These lower vasodilator responses were abolished with NG-nitro-l-arginine methyl ester but were unaffected by indomethacin. In addition, HDT was associated with lower levels of MCA caveolin-1 protein. Endothelium-independent vasodilation was not altered by HDT. These results indicate that chronic cephalic fluid shifts diminish endothelium-dependent vasodilation through alterations in the endothelial nitric oxide synthase signaling mechanism. Such decrements in endothelium-dependent vasodilation of cerebral arteries could contribute to the elevations in cerebral vascular resistance and reductions in cerebral perfusion that occur after conditions of simulated microgravity in HDT rats.

1998 ◽  
Vol 85 (5) ◽  
pp. 1615-1621 ◽  
Author(s):  
Greg G. Geary ◽  
Diana N. Krause ◽  
Ralph E. Purdy ◽  
Sue P. Duckles

Adaptation of the cerebral circulation to microgravity was investigated in rat middle cerebral arteries after 20 days of hindlimb unweighting (HU). Myogenic responses were measured in isolated, pressurized arteries from HU and control animals. Maximal passive lumen diameters, obtained in the absence of extracellular Ca2+ plus EDTA, were not significantly different between groups (249 vs. 258 μm). In physiological salt solution, arteries from both HU and control animals maintained a constant lumen diameter when subjected to incremental increases in transmural pressure (20–80 mmHg). However, the diameter of arteries from HU animals was significantly smaller than that of arteries from control animals at all pressures; this difference could be eliminated by exposure to the nitric oxide synthase inhibitor N G-nitro-l-arginine methyl ester. After HU treatment, transient distensibility of the artery wall in response to pressure was also significantly decreased, whereas the frequency and amplitude of vasomotion were increased. The latter changes were not affected by N G-nitro-l-arginine methyl ester. Thus simulated microgravity increases cerebral artery myogenic tone through both nitric oxide synthase-dependent and -independent mechanisms.


2000 ◽  
Vol 279 (2) ◽  
pp. H511-H519 ◽  
Author(s):  
Greg G. Geary ◽  
Diana N. Krause ◽  
Sue P. Duckles

Gender and estrogen status are known to influence the incidence and severity of cerebrovascular disease. The vasoprotective effects of estrogen are thought to include both nitric oxide-dependent and independent mechanisms. Therefore, using small, resistance-sized arteries pressurized in vitro, the present study determined the effect of gender and estrogen status on myogenic reactivity of mouse cerebral arteries. Luminal diameter was measured in middle cerebral artery segments from males and from females that were either untreated, ovariectomized (OVX), or OVX with estrogen replacement (OVX + EST). The maximal passive diameters of arteries from all four groups were similar. In response to increases in transmural pressure, diameters of arteries from males and OVX females were smaller compared with diameters of arteries from either untreated or OVX + EST females. In the presence of N G-nitro-l-arginine methyl ester, artery diameters decreased in all groups, but diameters remained significantly smaller in arteries from males and OVX females compared with untreated and OVX + EST females. After endothelium removal or when inhibition of nitric oxide synthase and cyclooxygenase were combined, differences in diameters of arteries from OVX and OVX + EST were abolished. These data suggest that chronic estrogen treatment modulates myogenic reactivity of mouse cerebral arteries through both endothelium-derived cyclooxygenase- and nitric oxide synthase-dependent mechanisms.


2010 ◽  
Vol 56 (8) ◽  
pp. 1345-1348 ◽  
Author(s):  
Simona Valleggi ◽  
Sridevi Devaraj ◽  
Mohan R Dasu ◽  
Ishwarlal Jialal

BACKGROUND C-reactive protein (CRP) inhibits the activity of the endothelial isoform of nitric oxide synthase (eNOS) via uncoupling of the enzyme both in vitro and in vivo. eNOS activity appears to be related in part to its interaction with other cellular proteins, including heat shock protein 90 (Hsp90), caveolin-1, and porin. In this study, we examined the effect of CRP treatment of human aortic endothelial cells (HAECs) on eNOS interaction with caveolin-1, Hsp90, and porin. METHODS We incubated HAECs with CRP (0, 12.5, and 25 mg/L) for 1, 6, or 24 h and assessed the interaction of these proteins with eNOS by immunoprecipitation and western blotting. RESULTS CRP treatment (12.5 and 25 mg/L) of HAECs for 24 h significantly increased eNOS binding to caveolin-1 (40% and 54% increase, respectively; P < 0.05) and decreased binding to Hsp90 (33% and 66% decrease, respectively; P < 0.05). CRP (25 mg/L) also significantly decreased the binding of porin to eNOS (11% decrease, P < 0.05). Similar results were seen when HAECs were treated with CRP for 6 h. CONCLUSIONS These negative protein–protein interactions of eNOS were able to partly explain the CRP-induced decreases in the activity of this critical enzyme, which caused endothelial dysfunction.


1997 ◽  
Vol 273 (3) ◽  
pp. H1472-H1477 ◽  
Author(s):  
J. You ◽  
T. D. Johnson ◽  
W. F. Childres ◽  
R. M. Bryan

The hypothesis that ATP and ADP produce dilations of rat middle cerebral arteries (MCAs) by different mechanisms was tested. Vessel diameters were measured from pressurized, perfused MCAs after application of different agonists. The luminal administration of ATP and ADP elicited concentration-dependent dilations (35% maximum). Removal of endothelium abolished the dilation to intraluminal ATP and attenuated the dilation to intraluminal ADP. The dilations to ATP were abolished with N omega-nitro-L-arginine methyl ester (L-NAME; 10 microM), a nitric oxide synthase inhibitor, at ATP concentrations of 1 microM and below. However, at concentrations of 10 microM ATP and above, L-NAME had no effect on the response. The dilations to ADP were attenuated by L-NAME to the same degree as removal of endothelium. The mechanism for dilation by ATP was identical to that of UTP, a selective P2u purinoceptor agonist. The mechanism of dilation by ADP was similar to that of 2-methylthioadenosine 5'-triphosphate, a selective P2y purinoceptor agonist. We conclude that ATP and ADP elicit dilations of rat MCA by different mechanisms. ATP and ADP likely stimulate P2u and P2y purinoceptors, respectively.


Cancers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2349
Author(s):  
Carlos Sanhueza ◽  
Jimena Castillo Bennett ◽  
Manuel Valenzuela-Valderrama ◽  
Pamela Contreras ◽  
Lorena Lobos-González ◽  
...  

Caveolin-1 (CAV1) is a well-established nitric oxide synthase inhibitor, whose function as a tumor suppressor is favored by, but not entirely dependent on, the presence of E-cadherin. Tumors are frequently hypoxic and the activation of the hypoxia-inducible factor-1α (HIF1α) promotes tumor growth. HIF1α is regulated by several post-translational modifications, including S-nitrosylation. Here, we evaluate the mechanisms underlying tumor suppression by CAV1 in cancer cells lacking E-cadherin in hypoxia. Our main findings are that CAV1 reduced HIF activity and Vascular Endothelial Growth Factor expression in vitro and in vivo. This effect was neither due to reduced HIF1α protein stability or reduced nuclear translocation. Instead, HIF1α S-nitrosylation observed in hypoxia was diminished by the presence of CAV1, and nitric oxide synthase (NOS) inhibition by Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME) reduced HIF1α transcriptional activity in cells to the same extent as observed upon CAV1 expression. Additionally, arginase inhibition by (S)-(2-Boronoethyl)-L-cysteine (BEC) partially rescued cells from the CAV1-mediated suppression of HIF1α transcriptional activity. In vivo, CAV1-mediated tumor suppression was dependent on NOS activity. In summary, CAV1-dependent tumor suppression in the absence of E-cadherin is linked to reduced HIF1α transcriptional activity via diminished NOS-mediated HIF1α S-nitrosylation.


1999 ◽  
Vol 86 (5) ◽  
pp. 1644-1650 ◽  
Author(s):  
Michael E. Ward

The in vitro responses to ACh, flow, and hypoxia were studied in arterioles isolated from the diaphragms of rats. The endothelium was removed in some vessels by low-pressure air perfusion. In endothelium-intact arterioles, pressurized to 70 mmHg in the absence of luminal flow, ACh (10−5 M) elicited dilation (from 103 ± 10 to 156 ± 13 μm). The response to ACh was eliminated by endothelial ablation and by the nitric oxide synthase antagonists N G-nitro-l-arginine (l-NNA; 10−5 M) and N G-nitro-l-arginine methyl ester (l-NAME, 10−5 M) but not by indomethacin (10−5 M). Increases in luminal flow (5–35 μl/min in 5 μl/min steps) at constant distending pressure (70 mmHg) elicited dilation (from 98 ± 8 to 159 ± 12 μm) in endothelium-intact arterioles. The response to flow was partially inhibited byl-NNA,l-NAME, and indomethacin and eliminated by endothelial ablation and by concurrent treatment withl-NAME and indomethacin. The response to hypoxia was determined by reducing the periarteriolar[Formula: see text] from 100 to 25–30 Torr by changing the composition of the gas used to bubble the superfusing solution. Hypoxia elicited dilation (from 110 ± 9 to 165 ± 12 μm) in endothelium-intact arterioles but not in arterioles from which the endothelium had been removed. Hypoxic vasodilation was eliminated by treatment with indomethacin and was not affected byl-NAME orl-NNA. In rat diaphragmatic arterioles, the response to ACh is dependent on endothelial nitric oxide release, whereas the response to hypoxia is mediated by endothelium-derived prostaglandins. Flow-dilation requires that both nitric oxide and cyclooxygenase pathways be intact.


1997 ◽  
Vol 9 (4) ◽  
pp. 433 ◽  
Author(s):  
María Beléen Herrero ◽  
J. Marcelo Viggiano ◽  
Silvina Pérez Martínez ◽  
Martha F. de Gimeno

In a recent work, we detected nitric oxide synthase (NO synthase) in the acrosome and tail of mouse and human spermatozoa by an immunofluorescence technique. Also, NO-synthase inhibitors added during sperm capacitationin vitro reduced the percentage of oocytes fertilized in vitro, suggesting a role for NO synthase in sperm function. Therefore, in the present study the effect of three NO-synthase inhibitors, NG-nitro-L-arginine methyl ester (L-NAME), NG-nitro-D-arginine methyl ester (D-NAME) and L-NG-nitro-arginine (NO2-arg), and of a nitric oxide donor, spermine-NONOate, on the progesterone-induced acrosome reaction of mouse sperm was examined. NO-synthase inhibitors were added at 0, 60 or 90 min during capacitation; at 120 min, mouse epididymal spermatozoa were exposed to 15 µM progesterone for another 15 min. In another set of experiments, different concentrations of spermine-NONOate were added to capacitated spermatozoa for 15 min; in these experiments, progesterone was not included. NO2-arg and L-NAME blocked progesterone-induced exocytosis regardless of the time at which these inhibitors were added. Moreover, D-NAME did not inhibit exocytosis. In contrast, spermine-NONOate stimulated the acrosomal exocytosis in vitro directly. These results provide evidence that mouse sperm NO synthase participates in the progesterone-induced acrosome reactionin vitro and that nitric oxide induces this event.


2003 ◽  
Vol 94 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Jin Ma ◽  
Chadi I. Kahwaji ◽  
Zhenmin Ni ◽  
Nosratola D. Vaziri ◽  
Ralph E. Purdy

The aim of the present work was to investigate the alterations in nitric oxide synthase (NOS) expression and nitrate and nitrite (NOx) content of different arteries from simulated microgravity rats. Male Wistar rats were randomly assigned to either a control group or simulated microgravity group. For simulating microgravity, animals were subjected to hindlimb unweighting (HU) for 20 days. Different arterial tissues were removed for determination of NOS expression and NOx. Western blotting was used to measure endothelial NOS (eNOS) and inducible NOS (iNOS) protein content. Total concentrations of NOx, stable metabolites of nitric oxide, were determined by the chemiluminescence method. Compared with controls, isolated vessels from simulated microgravity rats showed a significant increase in both eNOS and iNOS expression in carotid arteries and thoracic aorta and a significant decrease in eNOS and iNOS expression of mesenteric arteries. The eNOS and iNOS content of cerebral arteries, as well as that of femoral arteries, showed no differences between the two groups. Concerning NOx, vessels from HU rats showed an increase in cerebral arteries, a decrease in mesenteric arteries, and no change in carotid artery, femoral artery and thoracic aorta. These data indicated that there were differential alterations in NOS expression and NOx of different arteries after hindlimb unweighting. We suggest that these changes might represent both localized adaptations to differential body fluid redistribution and other factors independent of hemodynamic shifts during simulated microgravity.


Endocrinology ◽  
2010 ◽  
Vol 151 (3) ◽  
pp. 1236-1246 ◽  
Author(s):  
Luminita H. Pojoga ◽  
Jose R. Romero ◽  
Tham M. Yao ◽  
Paul Loutraris ◽  
Vincent Ricchiuti ◽  
...  

Caveolae are the major cellular membrane structure through which extracellular mediators transmit information to intracellular signaling pathways. In vascular tissue (but not ventricular myocardium), caveolin-1 (cav-1) is the main component of caveolae; cav-1 modulates enzymes and receptors, such as the endothelial nitric oxide synthase and the angiotensin II (AngII) type 1 receptor. Evidence suggests that AngII and aldosterone (ALDO) are important mediators of ventricular injury. We have described a model of biventricular damage in rodents that relies on treatment with N-ω-nitro-l-arginine methyl ester (L-NAME (nitric oxide synthase inhibitor)) and AngII. This damage initiated at the vascular level and was observed only in the presence of ALDO and an activated mineralocorticoid receptor (MR). We hypothesize that cav-1 modulates the adverse cardiac effects mediated by ALDO in this animal model. To test this hypothesis, we assessed the ventricular damage and measures of inflammation, in wild-type (WT) and cav-1 knockout (KO) mice randomized to either placebo or L-NAME/AngII treatment. Despite displaying cardiac hypertrophy at baseline and higher blood pressure responses to L-NAME/AngII, cav-1 KO mice displayed, as compared with WT, decreased treatment-induced biventricular damage as well as decreased transcript levels of the proinflammatory marker plasminogen activator inhibitor-1. Additionally, L-NAME/AngII induced an increase in cardiac MR levels in WT but not cav-1-ablated mice. Moreover and despite similar circulating ALDO levels in both genotypes, the myocardial damage (as determined histologically and by plasminogen activator inhibitor-1 mRNA levels) was less sensitive to ALDO levels in cav-1 KO vs. WT mice, consistent with decreased MR signaling in the cav-1 KO. Thus, we conclude that the L-NAME/AngII-induced biventricular damage is mediated by a mechanism partially dependent on cav-1 and signaling via MR/ALDO.


Sign in / Sign up

Export Citation Format

Share Document