Distributions of lung ventilation and perfusion in prone and supine humans exposed to hypergravity

2004 ◽  
Vol 97 (2) ◽  
pp. 675-682 ◽  
Author(s):  
M. Rohdin ◽  
J. Petersson ◽  
M. Mure ◽  
R. W. Glenny ◽  
S. G. E. Lindahl ◽  
...  

When normal subjects are exposed to hypergravity [5 times normal gravity (5 G)] there is an impaired arterial oxygenation that is less severe in the prone compared with supine posture. We hypothesized that under these conditions the heterogeneities of ventilation and/or perfusion distributions would be less prominent when subjects were prone compared with supine. Expirograms from a combined rebreathing-single breath washout maneuver (Rohdin M, Sundblad P, and Linnarsson D. J Appl Physiol 96: 1470–1477, 2004) were analyzed for vital capacity (VC), phase III slope, and phase IV amplitude, to analyze heterogeneities in ventilation (Ar) and perfusion [CO2-to-Ar ratio (CO2/Ar)] distribution, respectively. During hypergravity, VC decreased more in the supine than in the prone position (ANOVA, P = 0.02). Phase III slope was more positive for Ar ( P = 0.003) and more negative for CO2/Ar ( P = 0.007) in the supine compared with prone posture at 5 G, in agreement with the notion of a more severe hypergravity-induced ventilation-perfusion mismatch in supine posture. Phase IV amplitude became lower in the supine than in the prone posture for both Ar ( P = 0.02) and CO2/Ar ( P = 0.004) during hypergravity as a result of the more reduced VC in the supine posture. We speculate that results of VC and phase IV amplitude are due to the differences in heart-lung interaction and diaphragm position between postures: a stable position of the heart and diaphragm in prone hypergravity, in contrast to supine in which the weight of the heart and a cephalad shift of the diaphragm compress lung tissue.

2001 ◽  
Vol 90 (4) ◽  
pp. 1415-1423 ◽  
Author(s):  
M. J. Rodríguez-Nieto ◽  
G. Peces-Barba ◽  
N. González Mangado ◽  
S. Verbanck ◽  
M. Paiva

Vital capacity single-breath washouts using 90% O2-5% He-5% SF6 as a test gas mixture were performed with subjects sitting on a stool (upright) or recumbent on a stretcher (prone, supine, lateral left, lateral right, with or without rotation at end of inhalation). On the basis of the combinations of supine and prone maneuvers, gravity-dependent contributions to N2 phase III slope and N2 phase IV height in the supine posture were estimated at 18% and 68%, respectively. Whereas both He and SF6 slope decreased from supine to prone, the SF6-He slope difference actually increased ( P = 0.015). N2 phase III slopes, phase IV heights, and cardiogenic oscillations were smallest in the prone posture, and we observed similarities between the modifications of He and SF6 slopes from upright to prone and from upright to short-term microgravity. These results suggest that phase III slope is partially due to emptying patterns of small units with different ventilation-to-volume ratios, corresponding to acini or groups of acini. Of all body postures under study, the prone position most reduces the inhomogeneities of ventilation during a vital capacity maneuver at both inter- and intraregional levels.


2002 ◽  
Vol 92 (3) ◽  
pp. 1232-1238 ◽  
Author(s):  
Christopher N. Mills ◽  
Chantal Darquenne ◽  
G. Kim Prisk

We studied the effects on aerosol bolus inhalations of small changes in convective inhomogeneity induced by posture change from upright to supine in nine normal subjects. Vital capacity single-breath nitrogen washout tests were used to determine ventilatory inhomogeneity change between postures. Relative to upright, supine phase III slope was increased 33 ± 11% (mean ± SE, P < 0.05) and phase IV height increased 25 ± 11% ( P < 0.05), consistent with an increase in convective inhomogeneity likely due to increases in flow sequencing. Subjects also performed 0.5-μm-particle bolus inhalations to penetration volumes (Vp) between 150 and 1,200 ml during a standardized inhalation from residual volume to 1 liter above upright functional residual capacity. Mode shift (MS) in supine posture was more mouthward than upright at all Vp, changing by 11.6 ml at Vp = 150 ml ( P < 0.05) and 38.4 ml at Vp = 1,200 ml ( P < 0.05). MS and phase III slope changes correlated positively at deeper Vp. Deposition did not change at any Vp, suggesting that deposition did not cause the MS change. We propose that the MS change results from increased sequencing in supine vs. upright posture.


1980 ◽  
Vol 48 (1) ◽  
pp. 97-103 ◽  
Author(s):  
P. R. Sorenson ◽  
N. E. Robinson

Quasi-static pressure-volume curves and single-breath nitrogen washouts were performed simultaneously on eight anesthetized horses (average body wt = 485 kg) in left lateral, right lateral, prone, and supine postures (sequence randomized). The shift from prone to lateral or supine posture decreased expiratory reserve volume (ERV), vital capacity (VC), residual volume (RV), functional residual capacity (FRC), and total lung capacity (TLC); RV and FRC expressed as %TLC were unchanged, suggesting that in the lateral and supine postures a significant portion of the lung volume was not recruited by VC maneuvers. Phase III slope increased from 0.13 %N2/l in prone horses to 0.34 %N2/l in the lateral and supine positions. The onset of phase IV was not significantly different from FRC in the prone or laterally recombent animal, but exceeded FRC in the supine horse. The sequence of body positions had no effect on any of our results indicating that all changes in lung volumes and regional asynchronous ventilation c;n be reversed by placing the horse in the prone posture. The reduction in lung volume and increased asynchronous ventilation in the lateral and supine horse suggests that impaired gas exchange in anesthetized horses is predominantly related to posture, and not general anesthesia.


1984 ◽  
Vol 56 (1) ◽  
pp. 52-56 ◽  
Author(s):  
T. S. Hurst ◽  
B. L. Graham ◽  
D. J. Cotton

We studied 10 symptom-free lifetime non-smokers and 17 smokers all with normal pulmonary function studies. All subjects performed single-breath N2 washout tests by either exhaling slowly (“slow maneuver”) from end inspiration (EI) to residual volume (RV) or exhaling maximally (“fast maneuver”) from EI to RV. After either maneuver, subjects then slowly inhaled 100% O2 to total lung capacity (TLC) and without breath holding, exhaled slowly back to RV. In the nonsmokers seated upright phase III slope of single-breath N2 test (delta N2/l) was lower (P less than 0.01) for the fast vs. the slow maneuver, but this difference disappeared when the subjects repeated the maneuvers in the supine position. In contrast, delta N2/l was higher for the fast vs. the slow maneuver (P less than 0.01) in smokers seated upright. For the slow maneuver, delta N2/l was similar between smokers and nonsmokers but for the fast maneuvers delta N2/l was higher in smokers than nonsmokers (P less than 0.01). We suggest that the fast exhalation to RV decreases delta N2/l in normal subjects by decreasing apex-to-base differences in regional ratio of RV to TLC (RV/TLC) but increases delta N2/l in smokers, because regional RV/TLC increases distal to sites of small airways obstruction when the expiratory flow rate is increased.


1976 ◽  
Vol 41 (4) ◽  
pp. 474-479 ◽  
Author(s):  
D. A. Cortese ◽  
J. R. Rodarte ◽  
K. Rehder ◽  
R. E. Hyatt

The effect of posture on phase III (alveolar nitrogen plateau) and phase IV (closing capacity) of the single-breath oxygen test was examined in 10 normal people. In part 1 of the study, subjects inspired and expired in the standing, supine, prone, and right lateral decubitus positions; there was no effect of posture on phase IV but slopes of phase III were higher when subjects were in the supine and lateral positions. In part 2, subjects inspired in the standing position and expired in one of the recumbent positions. Phase IV occurred infrequently except in the prone position (6 of 10 subj); slopes of phase III in part 2 were not consistently altered by changing posture. It is difficult to explain the failure of posture to alter phase IV solely on a model requiring a linear gradient of pleural pressure. The slope of phase III appears to depend more on the emptying patterns of small regions with widely varying volume-to-ventilation ratios than on gravity-dependent sequences of emptying. Finally, the data suggest a considerable similarity between the upright and prone positions in terms of lung filling and emptying.


2004 ◽  
Vol 96 (4) ◽  
pp. 1470-1477 ◽  
Author(s):  
Malin Rohdin ◽  
Patrik Sundblad ◽  
Dag Linnarsson

Increased gravity impairs pulmonary distributions of ventilation and perfusion. We sought to develop a method for rapid, simultaneous, and noninvasive assessments of ventilation and perfusion distributions during a short-duration hypergravity exposure. Nine sitting subjects were exposed to one, two, and three times normal gravity (1, 2, and 3 G) in the head-to-feet direction and performed a rebreathing and a single-breath washout maneuver with a gas mixture containing C2H2, O2, and Ar. Expirograms were analyzed for cardiogenic oscillations (COS) and for phase IV amplitude to analyze inhomogeneities in ventilation (Ar) and perfusion [CO2-to-Ar ratio (CO2/Ar)] distribution, respectively. COS were normalized for changes in stroke volume. COS for Ar increased from 1-G control to 128 ± 6% (mean ± SE) at 2 G ( P = 0.02 for 1 vs. 2 G) and 165 ± 13% at 3 G ( P = 0.002 for 2 vs. 3 G). Corresponding values for CO2/Ar were 135 ± 12% ( P = 0.04) and 146 ± 13%. Phase IV amplitude for Ar increased to 193 ± 39% ( P = 0.008) at 2 G and 229 ± 51% at 3 G compared with 1 G. Corresponding values for CO2/Ar were 188 ± 29% ( P = 0.02) and 219 ± 18%. We conclude that not only large-scale ventilation and perfusion inhomogeneities, as reflected by phase IV amplitude, but also smaller-scale inhomogeneities, as reflected by the ratio of COS to stroke volume, increase with hypergravity. Except for small-scale ventilation distribution, most of the impairments observed at 3 G had been attained at 2 G. For some of the parameters and gravity levels, previous comparable data support the present simplified method.


1989 ◽  
Vol 66 (6) ◽  
pp. 2502-2510 ◽  
Author(s):  
A. B. Crawford ◽  
D. J. Cotton ◽  
M. Paiva ◽  
L. A. Engel

To examine the effect of preinspiratory lung volume (PILV) on ventilation distribution, we performed multiple-breath N2 washouts (MBNW) in seven normal subjects breathing 1-liter tidal volumes over a wide range of PILV above closing capacity. We measured the following two independent indexes of ventilation distribution from the MBNW: 1) the normalized phase III slope of the final breaths of the washout (Snf) and 2) the alveolar mixing efficiency during that portion of the washout where 80–90% of the lung N2 had been cleared. Three of the subjects also performed single-breath N2 washouts (SBNW) by inspiring 1-liter breaths and expiring to residual volume at PILV = functional residual capacity (FRC), FRC + 1.0, and FRC - 0.5, respectively. From the SBNW we measured the phase III slope over the expired volume ranges of 0.75–1.0, 1.0–1.6, and 1.6–2.2 liters (S0.75, S1.0, and S1.6, respectively). Between a PILV of 0.92 +/- 0.09 (SE) liter above FRC and a PILV of 1.17 +/- 0.43 liter below FRC, Snf decreased by 61% (P less than 0.001) and alveolar mixing efficiency increased from 80 to 85% (P = 0.05). In addition, Snf and alveolar mixing efficiency were negatively correlated (r = 0.74). In contrast, over a similar volume range, S1.0 and S1.6 were greater at lower PILV. We conclude that, during tidal breathing in normal subjects, ventilation distribution becomes progressively more inhomogeneous at higher lung volumes over a range of volumes above closing capacity.(ABSTRACT TRUNCATED AT 250 WORDS)


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Elizabeth Jauhar Cardoso Bessa ◽  
Felipe de Miranda Carbonieri Ribeiro ◽  
Geraldo da Rocha Castelar Pinheiro ◽  
Agnaldo José Lopes

Abstract Objective There has been growing interest in studying small airway disease through measures of ventilation distribution, thanks to the resurgence of the nitrogen single-breath washout (N2SBW) test. Therefore, this study evaluated the contribution of the N2SBW test to the detection of pulmonary involvement in patients with rheumatoid arthritis (RA). Results Twenty-one patients with RA underwent clinical evaluation, pulmonary function tests (PFTs), including the N2SBW test, and computed tomography (CT). The main tomographic findings were air trapping and bronchiectasis (57.1% and 23.8% of cases, respectively). According to the phase III slope of the N2SBW (phase III slope), 11 and 10 patients had values < 120% predicted and > 120% predicted, respectively. Five patients with limited involvement on CT had a phase III slope > 120%. The residual volume/total lung capacity ratio was significantly different between patients with phase III slopes < 120% and > 120% (P = 0.024). Additionally, rheumatoid factor positivity was higher in patients with a phase III slope > 120% (P = 0.021). In patients with RA and airway disease on CT, the N2SBW test detects inhomogeneity in the ventilation distribution in approximately half of the cases, even in those with normal conventional PFT results.


1994 ◽  
Vol 76 (4) ◽  
pp. 1494-1501 ◽  
Author(s):  
G. R. Soparkar ◽  
J. T. Mink ◽  
B. L. Graham ◽  
D. J. Cotton

The dynamic changes in CO concentration [CO] during a single breath could be influenced by topographic inhomogeneity in the lung or by peripheral inhomogeneity due to a gas mixing resistance in the gas phase of the lung or to serial gradients in gas diffusion. Ten healthy subjects performed single-breath maneuvers by slowly inhaling test gas from functional residual capacity to one-half inspiratory capacity and slowly exhaling to residual volume with target breath-hold times of 0, 1.5, 3, 6, and 9 s. We calculated the three-equation single-breath diffusing capacity of the lung for CO (DLSBCO-3EQ) from the mean [CO] in both the entire alveolar gas sample and in four successive equal alveolar gas samples. DLSBCO-3EQ from the entire alveolar gas sample was independent of breath-hold time. However, with 0 s of breath holding, from early alveolar gas samples DLSBCO-3EQ was reduced and from late alveolar gas samples it was increased. With increasing breath-hold time, DLSBCO-3EQ from the earliest alveolar gas sample rapidly increased, whereas from the last alveolar gas sample it rapidly decreased such that all values from the small alveolar gas samples approached DLSBCO-3EQ from the entire alveolar sample. These changes correlated with ventilation inhomogeneity, as measured by the phase III He concentration slope and the mixing efficiency, and were larger for maneuvers with inspired volumes to one-half inspiratory capacity vs. total lung capacity.(ABSTRACT TRUNCATED AT 250 WORDS)


1988 ◽  
Vol 64 (2) ◽  
pp. 642-648 ◽  
Author(s):  
S. Tomioka ◽  
S. Kubo ◽  
H. J. Guy ◽  
G. K. Prisk

To examine the mechanisms of lung filling and emptying, Ar-bolus and N2 single-breath washout tests were conducted in 10 anesthetized dogs (prone and supine) and in three of those dogs with body rotation. Transpulmonary pressure was measured simultaneously, allowing identification of the lung volume above residual volume at which there was an inflection point in the pressure-volume curve (VIP). Although phase IV for Ar was upward, phase IV for N2 was small and variable, especially in the prone position. No significant prone to supine differences in closing capacity for Ar were seen, indicating that airway closure was generated at the same lung volumes. The maximum deflections of phase IV for Ar and N2 from extrapolated phase III slopes were smaller in the prone position, suggesting more uniform tracer gas concentrations across the lungs. VIP was smaller than the closing volume for Ar, which is consistent with the effects of well-developed collateral ventilation in dogs. Body rotation tests in three dogs did not generally cause an inversion of phase III or IV. We conclude that in recumbent dogs regional distribution of ventilation is not primarily determined by the effect of gravity, but by lung, thorax, and mediastinum interactions and/or differences in regional mechanical properties of the lungs.


Sign in / Sign up

Export Citation Format

Share Document