scholarly journals Chronic low-frequency rTMS of primary motor cortex diminishes exercise training-induced gains in maximal voluntary force in humans

2009 ◽  
Vol 106 (2) ◽  
pp. 403-411 ◽  
Author(s):  
Tibor Hortobágyi ◽  
Sarah Pirio Richardson ◽  
Mikhael Lomarev ◽  
Ejaz Shamim ◽  
Sabine Meunier ◽  
...  

Although there is consensus that the central nervous system mediates the increases in maximal voluntary force (maximal voluntary contraction, MVC) produced by resistance exercise, the involvement of the primary motor cortex (M1) in these processes remains controversial. We hypothesized that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of M1 during resistance training would diminish strength gains. Forty subjects were divided equally into five groups. Subjects voluntarily (Vol) abducted the first dorsal interosseus (FDI) (5 bouts × 10 repetitions, 10 sessions, 4 wk) at 70–80% MVC. Another group also exercised but in the 1-min-long interbout rest intervals they received rTMS [Vol+rTMS, 1 Hz, FDI motor area, 300 pulses/session, 120% of the resting motor threshold (rMT)]. The third group also exercised and received sham rTMS (Vol+Sham). The fourth group received only rTMS (rTMS_only). The 37.5% and 33.3% gains in MVC in Vol and Vol+Sham groups, respectively, were greater ( P = 0.001) than the 18.9% gain in Vol+rTMS, 1.9% in rTMS_only, and 2.6% in unexercised control subjects who received no stimulation. Acutely, within sessions 5 and 10, single-pulse TMS revealed that motor-evoked potential size and recruitment curve slopes were reduced in Vol+rTMS and rTMS_only groups and accumulated to chronic reductions by session 10. There were no changes in rMT, maximum compound action potential amplitude (Mmax), and peripherally evoked twitch forces in the trained FDI and the untrained abductor digiti minimi. Although contributions from spinal sources cannot be excluded, the data suggest that M1 may play a role in mediating neural adaptations to strength training.

2016 ◽  
Vol 03 (01) ◽  
pp. 002-006
Author(s):  
Lara Schrader ◽  
Sima Sadeghinejad ◽  
Jalleh Sadeghinejad ◽  
Movses Kazanchyan ◽  
Lisa Koski ◽  
...  

Abstract Background/objectives Optimal low frequency repetitive transcranial magnetic stimulation (LF-rTMS) parameters for treating epilepsy and other brain disorders are unknown. To address this question, a systematic study of the effects of LF-rTMS frequency and intensity on cortical excitability was performed. Methods Using a four-period crossover design, subjects were scheduled for four LF-rTMS sessions that were at least four weeks apart. LF-rTMS was delivered as 900 pulses directed at primary motor cortex using four protocols: 0.5 Hz at 90% resting motor threshold (RMT), 0.5 Hz at 110% RMT, 1 Hz at 90% RMT, and 1 Hz at 110% RMT. Motor evoked potential (MEP) amplitude, resting motor threshold (RMT), and cortical silent period (CSP) were measured before, immediately after, and 60 min after LF-rTMS. Each of the four protocols was analyzed separately to compare baseline measurements to those after LF-rTMS. Results None of the four LF-rTMS protocols produced a trend or significant change in MEP amplitude, RMT, or CSP. Conclusion The lack of significant effect from the four LF-rTMS protocols indicates that none produced evidence for alteration of cortical excitability. The direct comparison of four LF-rTMS protocols is distinct to this investigation, as most similar studies were exploratory and studied only one or two protocols. The negative result relates only to the methods used in this investigation and does not indicate that LF-rTMS does not alter cortical excitability with other parameters. These results may be useful when designing additional investigations into the effect of LF-rTMS on epilepsy, other disorders, and cortical excitability.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Yang ◽  
Ines Eisner ◽  
Siqi Chen ◽  
Shaosong Wang ◽  
Fan Zhang ◽  
...  

While neuroplasticity changes measured by transcranial magnetic stimulation have been proved to be highly correlated to motor recovery and have been tested in various forms of interventions, it has not been applied to investigate the neurophysiologic mechanism of acupuncture therapy. The aim of this study is to investigate neuroplasticity changes induced by a single session of acupuncture therapy in healthy adults, regarding the excitability change on bilateral primary motor cortex and interhemispheric inhibition. Ten subjects took a 30-minute acupuncture therapy and the same length relaxing phase in separate days. Transcranial magnetic stimulation measures, including resting motor threshold, amplitudes of motor-evoked potential, and interhemispheric inhibition, were assessed before and 10 minutes after intervention. Acupuncture treatment showed significant changes on potential amplitude from both ipsilateral and contralateral hemispheres to acupuncture compared to baseline. Also, interhemispheric inhibition from the contralateral motor cortex to the opposite showed a significant decline. The results indicated that corticomotoneuronal excitability and interhemispheric competition could be modulated by acupuncture therapy on healthy subjects. The following question about whether these changes will be observed in the same way on stroke patients and whether they correlate with the therapeutic effect on movement need to be answered by following studies. This trial is registered with ISRCTN13074245.


2007 ◽  
Vol 97 (3) ◽  
pp. 2511-2515 ◽  
Author(s):  
Michelle L. Harris-Love ◽  
Monica A. Perez ◽  
Robert Chen ◽  
Leonardo G. Cohen

Interhemispheric inhibitory interactions (IHI) operate between homologous distal hand representations in primary motor cortex (M1). It is not known whether proximal arm representations exhibit comparable effects on their homologous counterparts. We studied IHI in different arm representations, targeting triceps brachii (TB, n = 13), first dorsal interosseous (FDI, n = 13), and biceps brachii (BB, n = 7) muscles in healthy volunteers. Transcranial magnetic stimulation test stimuli (TS) were delivered to M1 contralateral to the target muscle preceded 10 ms by a conditioning stimulus (CS) to the opposite M1 at 110–150% resting motor threshold (RMT). IHI was calculated as the ratio between motor-evoked potential (MEP) amplitudes in conditioned relative to unconditioned trials. Mean RMTs were 38.9, 46.9, and 46.0% of stimulator output in FDI, TB, and BB muscles, respectively. IHI was 0.45 ± 0.41 (FDI), 0.78 ± 0.38 (TB), and 0.52 ± 0.32 (BB, P < 0.01) when test MEP amplitudes were matched and 0.28 ± 0.17 (FDI) and 0.85 ± 0.31 (TB, P < 0.05) when TS intensities expressed as percentage RMT were matched. Significant IHI ( P < 0.05) was identified with minimal CS intensities (expressed as percentage stimulator output) in the 30 s for FDI, 60 s for TB, and 40 s for BB. Additionally, a CS of roughly 120% RMT suppressed the test MEP but not a test H-reflex in BB, suggesting IHI observed in BB is likely mediated by a supraspinal mechanism. We conclude that IHI differs between different arm muscle representations, comparable between BB and FDI but lesser for TB. This finding suggests the amount of IHI between different arm representations does not strictly follow a proximal-to-distal gradient, but may be related to the role of each muscle in functional movement synergies.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Lan Zhang ◽  
Guoqiang Xing ◽  
Shiquan Shuai ◽  
Zhiwei Guo ◽  
Huaping Chen ◽  
...  

Background and Purpose. This meta-analysis aimed to evaluate the therapeutic potential of low-frequency repetitive transcranial magnetic stimulation (LF-rTMS) over the contralesional hemisphere on upper limb motor recovery and cortex plasticity after stroke.Methods. Databases of PubMed, Medline, ScienceDirect, Cochrane, and Embase were searched for randomized controlled trials published before Jun 31, 2017. The effect size was evaluated by using the standardized mean difference (SMD) and a 95% confidence interval (CI). Resting motor threshold (rMT) and motor-evoked potential (MEP) were also examined.Results. Twenty-two studies of 1 Hz LF-rTMS over the contralesional hemisphere were included. Significant efficacy was found on finger flexibility (SMD = 0.75), hand strength (SMD = 0.49), and activity dexterity (SMD = 0.32), but not on body function (SMD = 0.29). The positive changes of rMT (SMD = 0.38 for the affected hemisphere and SMD = −0.83 for the unaffected hemisphere) and MEP (SMD = −1.00 for the affected hemisphere and SMD = 0.57 for the unaffected hemisphere) were also significant.Conclusions. LF-rTMS as an add-on therapy significantly improved upper limb functional recovery especially the hand after stroke, probably through rebalanced cortical excitability of both hemispheres. Future studies should determine if LF-rTMS alone or in conjunction with practice/training would be more effective.Clinical Trial Registration Information. This trial is registered with unique identifierCRD42016042181.


Cephalalgia ◽  
2018 ◽  
Vol 39 (2) ◽  
pp. 237-244 ◽  
Author(s):  
Francesca Cortese ◽  
Francesco Pierelli ◽  
Flavia Pauri ◽  
Cherubino Di Lorenzo ◽  
Chiara Lepre ◽  
...  

Objective To study the effects of trains of repetitive transcranial magnetic stimulation (rTMS) over the motor cortex in patients with chronic migraine (CM) with or without medication overuse (MOH). Subjects and methods Thirty-two patients (CM [n = 16]; MOH [n = 16]) and 16 healthy volunteers (HVs) underwent rTMS recording. Ten trains of 10 stimuli each (120% resting motor threshold) were applied over the left motor cortex at 1 Hz or 5 Hz in random order. The amplitude of motor evoked potential (MEP) was evaluated from electromyographic recording in the first dorsal interosseous muscle. The slope of the linear regression line for the 10 stimuli for each participant was calculated using normalized data. Results rTMS-1 Hz had a normal depressive effect on MEP amplitude in all groups. rTMS-5 Hz depressed instead of potentiating MEP amplitudes in MOH patients, with a significantly different response from that in HVs and CM patients. The slope of the linear regression of MEP amplitudes was negatively correlated with pain intensity in CM patients, and with the duration of overuse headache in MOH patients. Conclusions This different plastic behaviour suggests that MOH and CM, despite exhibiting a similar clinical phenotype, have different neurophysiological learning processes, probably related to different pathophysiological mechanisms of migraine chronification.


2011 ◽  
Vol 106 (4) ◽  
pp. 1614-1621 ◽  
Author(s):  
Cathrin M. Buetefisch ◽  
Benjamin Hines ◽  
Linda Shuster ◽  
Paola Pergami ◽  
Adam Mathes

The role of primary motor cortex (M1) in the control of voluntary movements is still unclear. In brain functional imaging studies of unilateral hand performance, bilateral M1 activation is inconsistently observed, and disruptions of M1 using repetitive transcranial magnetic stimulation (rTMS) lead to variable results in the hand motor performance. As the motor tasks differed qualitatively in these studies, it is conceivable that M1 contribution differs depending on the level of skillfulness. The objective of the present study was to determine whether M1 contribution to hand motor performance differed depending on the level of precision of the motor task. Here, we used low-frequency rTMS of left M1 to determine its effect on the performance of a pointing task that allows the parametric increase of the level of precision and thereby increase the level of required precision quantitatively. We found that low-frequency rTMS improved performance in both hands for the task with the highest demand on precision, whereas performance remained unchanged for the tasks with lower demands. These results suggest that the functional relevance of M1 activity for motor performance changes as a function of motor demand. The bilateral effect of rTMS to left M1 would also support the notion of M1 functions at a higher level in motor control by integrating afferent input from nonprimary motor areas.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Eduardo Arruda Mello ◽  
Leonardo G. Cohen ◽  
Sarah Monteiro dos Anjos ◽  
Juliana Conti ◽  
Karina Nocelo F. Andrade ◽  
...  

Low-frequency repetitive transcranial magnetic stimulation of the unaffected hemisphere (UH-LF-rTMS) in patients with stroke can decrease interhemispheric inhibition from the unaffected to the affected hemisphere and improve hand dexterity and strength of the paretic hand. The objective of this proof-of-principle study was to explore, for the first time, effects of UH-LF-rTMS as add-on therapy to motor rehabilitation on short-term intracortical inhibition (SICI) and intracortical facilitation (ICF) of the motor cortex of the unaffected hemisphere (M1UH) in patients with ischemic stroke. Eighteen patients were randomized to receive, immediately before rehabilitation treatment, either active or sham UH-LF-rTMS, during two weeks. Resting motor threshold (rMT), SICI, and ICF were measured inM1UHbefore the first session and after the last session of treatment. There was a significant increase in ICF in the active group compared to the sham group after treatment, and there was no significant differences in changes in rMT or SICI. ICF is a measure of intracortical synaptic excitability, with a relative contribution of spinal mechanisms. ICF is typically upregulated by glutamatergic agonists and downregulated by gabaergic antagonists. The observed increase in ICF in the active group, in this hypothesis-generating study, may be related toM1UHreorganization induced by UH-LF-rTMS.


2013 ◽  
Vol 109 (1) ◽  
pp. 106-112 ◽  
Author(s):  
R. F. H. Cash ◽  
F. L. Mastaglia ◽  
G. W. Thickbroom

A single transcranial magnetic stimulation (TMS) pulse typically evokes a short series of spikes in corticospinal neurons [known as indirect (I)-waves] which are thought to arise from transynaptic input. Delivering a second pulse at inter-pulse intervals (IPIs) corresponding to the timing of these I-waves leads to a facilitation of the response, and if stimulus pairs are delivered repeatedly, a persistent LTP-like increase in excitability can occur. This has been demonstrated at an IPI of 1.5 ms, which corresponds to the first I-wave interval, in an intervention referred to as ITMS (I-wave TMS), and it has been argued that this may have similarities with timing-dependent plasticity models. Consequently, we hypothesized that if the second stimulus is delivered so as not to coincide with I-wave timing, it should lead to LTD. We performed a crossover study in 10 subjects in which TMS doublets were timed to coincide (1.5-ms IPI, ITMS1.5) or not coincide (2-ms IPI, ITMS2) with I-wave firing. Single pulse motor-evoked potential (MEP) amplitude, resting motor threshold (RMT), and short-interval cortical inhibition (SICI) were measured from the first dorsal interosseous (FDI) muscle. After ITMS1.5 corticomotor excitability was increased by ∼60% for 15 min ( P < 0.05) and returned to baseline by 20 min. Increasing the IPI by just 500 μs to 2 ms reversed the aftereffect, and MEP amplitude was significantly reduced (∼35%, P < 0.05) for 15 min before returning to baseline. This reduction was not associated with an increase in SICI, suggesting a reduction in excitatory transmission rather than an increase in inhibitory efficacy. RMT also remained unchanged, suggesting that these changes were not due to changes in membrane excitability. Amplitude-matching ITMS2 did not modulate excitability. The results are consistent with timing-dependent synaptic LTP/D-like effects and suggest that there are plasticity mechanisms operating in the human motor cortex with a temporal resolution of the order of a few hundreds of microseconds.


2020 ◽  
Vol 10 (2) ◽  
pp. 63 ◽  
Author(s):  
Akiyoshi Matsugi ◽  
Shinya Douchi ◽  
Kodai Suzuki ◽  
Kosuke Oku ◽  
Nobuhiko Mori ◽  
...  

This study aimed to investigate whether cerebellar transcranial magnetic stimulation (C-TMS) affected the cortical silent period (cSP) induced by TMS over the primary motor cortex (M1) and the effect of interstimulus interval (ISI) on cerebellar conditioning and TMS to the left M1 (M1-TMS). Fourteen healthy adult participants were instructed to control the abduction force of the right index finger to 20% of the maximum voluntary contraction. M1-TMS was delivered during this to induce cSP on electromyograph of the right first dorsal interosseous muscle. TMS over the right cerebellum (C-TMS) was conducted prior to M1-TMS. In the first experiment, M1-TMS intensity was set to 1 or 1.3 × resting motor threshold (rMT) with 20-ms ISI. In the second experiment, the intensity was set to 1 × rMT with ISI of 0, 10, 20, 30, 40, 50, 60, 70, or 80 ms, and no-C-TMS trials were inserted. In results, cSP was significantly shorter in 1 × rMT condition than in 1.3 × rMT by C-TMS, and cSP was significantly shorter for ISI of 20–40 ms than for the no-C-TMS condition. Further, motor evoked potential for ISI40-60 ms were significantly reduced than that for ISI0. Thus, C-TMS may reduce cSP induced by M1-TMS with ISI of 20–40 ms.


2008 ◽  
Vol 99 (2) ◽  
pp. 564-570 ◽  
Author(s):  
A. Suppa ◽  
M. Bologna ◽  
F. Gilio ◽  
C. Lorenzano ◽  
J. C. Rothwell ◽  
...  

Short trains of suprathreshold 5-Hz repetitive transcranial magnetic stimulation (rTMS) over primary motor cortex (M1) evoke motor potentials (MEPs) in hand muscles that progressively increase in amplitude via a mechanism that is thought to be similar to short-term potentiation described in animal preparations. Long trains of subthreshold rTMS over dorsal premotor cortex (PMd) are known to affect the amplitude of single-pulse MEPs evoked from M1. We tested whether PMd-rTMS affects short-term facilitation in M1. We also explored the effect of PMd-rTMS on M1 responses evoked by single-pulse TMS of different polarities. We tested in 15 healthy subjects short-term facilitation in left M1 (10 suprathreshold TMS pulses at 5 Hz) after applying rTMS to left PMd (1,500 subthreshold pulses at 1 and 5 Hz). In a sample of subjects we delivered single-pulse TMS with different polarities and paired-pulse TMS at short intervals (SICI) after PMd-rTMS. Short-term facilitation in M1 was reduced after applying 1 Hz to PMd, but was unaffected after 5-Hz PMd-rTMS. PMd-rTMS with 1 Hz reduced the amplitude of MEPs evoked by monophasic posteroanterior (PA) or biphasic anteroposterior (AP)–PA but had little effect on MEPs by monophasic AP or biphasic PA–AP single-pulse TMS. PMd-rTMS left SICI unchanged. PMd-rTMS (1 Hz) reduces short-term facilitation in M1 induced by short 5-Hz trains. This effect is likely to be caused by reduced facilitation of I-wave inputs to corticospinal neurons.


Sign in / Sign up

Export Citation Format

Share Document