scholarly journals Cerebellar Transcranial Magnetic Stimulation Reduces the Silent Period on Hand Muscle Electromyography During Force Control

2020 ◽  
Vol 10 (2) ◽  
pp. 63 ◽  
Author(s):  
Akiyoshi Matsugi ◽  
Shinya Douchi ◽  
Kodai Suzuki ◽  
Kosuke Oku ◽  
Nobuhiko Mori ◽  
...  

This study aimed to investigate whether cerebellar transcranial magnetic stimulation (C-TMS) affected the cortical silent period (cSP) induced by TMS over the primary motor cortex (M1) and the effect of interstimulus interval (ISI) on cerebellar conditioning and TMS to the left M1 (M1-TMS). Fourteen healthy adult participants were instructed to control the abduction force of the right index finger to 20% of the maximum voluntary contraction. M1-TMS was delivered during this to induce cSP on electromyograph of the right first dorsal interosseous muscle. TMS over the right cerebellum (C-TMS) was conducted prior to M1-TMS. In the first experiment, M1-TMS intensity was set to 1 or 1.3 × resting motor threshold (rMT) with 20-ms ISI. In the second experiment, the intensity was set to 1 × rMT with ISI of 0, 10, 20, 30, 40, 50, 60, 70, or 80 ms, and no-C-TMS trials were inserted. In results, cSP was significantly shorter in 1 × rMT condition than in 1.3 × rMT by C-TMS, and cSP was significantly shorter for ISI of 20–40 ms than for the no-C-TMS condition. Further, motor evoked potential for ISI40-60 ms were significantly reduced than that for ISI0. Thus, C-TMS may reduce cSP induced by M1-TMS with ISI of 20–40 ms.

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Yi Yang ◽  
Ines Eisner ◽  
Siqi Chen ◽  
Shaosong Wang ◽  
Fan Zhang ◽  
...  

While neuroplasticity changes measured by transcranial magnetic stimulation have been proved to be highly correlated to motor recovery and have been tested in various forms of interventions, it has not been applied to investigate the neurophysiologic mechanism of acupuncture therapy. The aim of this study is to investigate neuroplasticity changes induced by a single session of acupuncture therapy in healthy adults, regarding the excitability change on bilateral primary motor cortex and interhemispheric inhibition. Ten subjects took a 30-minute acupuncture therapy and the same length relaxing phase in separate days. Transcranial magnetic stimulation measures, including resting motor threshold, amplitudes of motor-evoked potential, and interhemispheric inhibition, were assessed before and 10 minutes after intervention. Acupuncture treatment showed significant changes on potential amplitude from both ipsilateral and contralateral hemispheres to acupuncture compared to baseline. Also, interhemispheric inhibition from the contralateral motor cortex to the opposite showed a significant decline. The results indicated that corticomotoneuronal excitability and interhemispheric competition could be modulated by acupuncture therapy on healthy subjects. The following question about whether these changes will be observed in the same way on stroke patients and whether they correlate with the therapeutic effect on movement need to be answered by following studies. This trial is registered with ISRCTN13074245.


2017 ◽  
Vol 122 (6) ◽  
pp. 1504-1515 ◽  
Author(s):  
Robin Souron ◽  
Adrien Farabet ◽  
Léonard Féasson ◽  
Alain Belli ◽  
Guillaume Y. Millet ◽  
...  

The aim of this study was to evaluate the effects of an 8-wk local vibration training (LVT) program on functional and corticospinal properties of dorsiflexor muscles. Forty-four young subjects were allocated to a training (VIB, n = 22) or control (CON, n = 22) group. The VIB group performed twenty-four 1-h sessions (3 sessions/wk) of 100-Hz vibration applied to the right tibialis anterior. Both legs were tested in each group before training (PRE), after 4 (MID) and 8 (POST) wk of training, and 2 wk after training (POST2W). Maximal voluntary contraction (MVC) torque was assessed, and transcranial magnetic stimulation (TMS) was used to evaluate cortical voluntary activation (VATMS), motor evoked potential (MEP), cortical silent period (CSP), and input-output curve parameters. MVC was significantly increased for VIB at MID for right and left legs [+7.4% ( P = 0.001) and +6.2% ( P < 0.01), respectively] and remained significantly greater than PRE at POST [+12.0% ( P < 0.001) and +10.1% ( P < 0.001), respectively]. VATMS was significantly increased for right and left legs at MID [+4.4% ( P < 0.01) and +4.7% ( P < 0.01), respectively] and at POST [+4.9% ( P = 0.001) and +6.2% ( P = 0.001), respectively]. These parameters remained enhanced in both legs at POST2W. MEP and CSP recorded during MVC and input-output curve parameters did not change at any time point for either leg. Despite no changes in excitability or inhibition being observed, LVT seems to be a promising method to improve strength through an increase of maximal voluntary activation, i.e., neural adaptations. Local vibration may thus be further considered for clinical or aging populations. NEW & NOTEWORTHY The effects of a local vibration training program on cortical voluntary activation measured with transcranial magnetic stimulation were assessed for the first time in dorsiflexors, a functionally important muscle group. We observed that training increased maximal voluntary strength likely because of the strong and repeated activation of Ia spindle afferents during vibration training that led to changes in the cortico-motoneuronal pathway, as demonstrated by the increase in cortical voluntary activation.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1530
Author(s):  
Francesco Fisicaro ◽  
Giuseppe Lanza ◽  
Carmela Cinzia D’Agate ◽  
Raffaele Ferri ◽  
Mariagiovanna Cantone ◽  
...  

Background: Celiac disease (CD) may present or be complicated by neurological and neuropsychiatric manifestations. Transcranial magnetic stimulation (TMS) probes brain excitability non-invasively, also preclinically. We previously demonstrated an intracortical motor disinhibition and hyperfacilitation in de novo CD patients, which revert back after a long-term gluten-free diet (GFD). In this cross-sectional study, we explored the interhemispheric excitability by transcallosal inhibition, which has never been investigated in CD. Methods: A total of 15 right-handed de novo, neurologically asymptomatic, CD patients and 15 age-matched healthy controls were screened for cognitive and depressive symptoms to the Montreal Cognitive Assessment (MoCA) and the 17-item Hamilton Depression Rating Scale (HDRS), respectively. TMS consisted of resting motor threshold, amplitude, latency, and duration of the motor evoked potentials, duration and latency of the contralateral silent period (cSP). Transcallosal inhibition was evaluated as duration and latency of the ipsilateral silent period (iSP). Results: MoCA and HDRS scored significantly worse in patients. The iSP and cSP were significantly shorter in duration in patients, with a positive correlation between the MoCA and iSP. Conclusions: An intracortical and interhemispheric motor disinhibition was observed in CD, suggesting the involvement of GABA-mediated cortical and callosal circuitries. Further studies correlating clinical, TMS, and neuroimaging data are needed.


2021 ◽  
Vol 74 (1-2) ◽  
pp. 41-49
Author(s):  
Zeynep Ozdemir ◽  
Erkan Acar ◽  
Aysun Soysal

Transcranial magnetic stimulation is a non-invasive procedure that uses robust magnetic fields to create an electrical current in the cerebral cortex. Dual stimulation consists of administering subthre­shold conditioning stimulation (CS), then suprathreshold test stimulation (TS). When the interstimulus interval (ISI) is 1-6 msec, the motor evoked potential (MEP) decreases in amplitude; this decrease is termed “short interval intracortical inhibition” (SICI); when the ISI is 7-30 msec, an increase in MEP amplitude occurs, termed “short interval intracortical facilitation” (SICF). Continuous theta burst stimulation (cTBS), often applied at a frequency of 50 Hz, has been shown to decrease cortical excitability. The primary objective is to determine which duration of cTBS achieves better inhibition or excitation. The secondary objective is to compare 50 Hz cTBS to 30 Hz and 100 Hz cTBS. The resting motor threshold (rMT), MEP, SICI, and SICF were studied in 30 healthy volunteers. CS and TS were administered at 80%-120% and 70%-140% of rMT at 2 and 3-millisecond (msec) intervals for SICI, and 10- and 12-msec intervals for SICF. Ten individuals in each group received 30, 50, or 100 Hz, followed by administration of rMT, MT-MEP, SICI, SICF immediately and at 30 minutes. Greater inhibition was achieved with 3 msec than 2 msec in SICI, whereas better facilitation occurred at 12 msec than 10 msec in SICF. At 30 Hz, cTBS augmented inhibition and suppressed facilitation, while 50 Hz yielded less inhibition and greater inter-individual variability. At 100 Hz, cTBS provided slight facilitation in MEP amplitudes with less interindividual variability. SICI and SICF did not differ significantly between 50 Hz and 100 Hz cTBS. Our results suggest that performing SICI and SICF for 3 and 12 msec, respectively, and CS and TS at 80%-120% of rMT, demonstrate safer inhibition and facilitation. Recently, TBS has been used in the treatment of various neurological diseases, and we recommend preferentially 30 Hz over 50 Hz cTBS for better inhibition with greater safety and less inter-individual variability.


2009 ◽  
Vol 106 (2) ◽  
pp. 403-411 ◽  
Author(s):  
Tibor Hortobágyi ◽  
Sarah Pirio Richardson ◽  
Mikhael Lomarev ◽  
Ejaz Shamim ◽  
Sabine Meunier ◽  
...  

Although there is consensus that the central nervous system mediates the increases in maximal voluntary force (maximal voluntary contraction, MVC) produced by resistance exercise, the involvement of the primary motor cortex (M1) in these processes remains controversial. We hypothesized that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of M1 during resistance training would diminish strength gains. Forty subjects were divided equally into five groups. Subjects voluntarily (Vol) abducted the first dorsal interosseus (FDI) (5 bouts × 10 repetitions, 10 sessions, 4 wk) at 70–80% MVC. Another group also exercised but in the 1-min-long interbout rest intervals they received rTMS [Vol+rTMS, 1 Hz, FDI motor area, 300 pulses/session, 120% of the resting motor threshold (rMT)]. The third group also exercised and received sham rTMS (Vol+Sham). The fourth group received only rTMS (rTMS_only). The 37.5% and 33.3% gains in MVC in Vol and Vol+Sham groups, respectively, were greater ( P = 0.001) than the 18.9% gain in Vol+rTMS, 1.9% in rTMS_only, and 2.6% in unexercised control subjects who received no stimulation. Acutely, within sessions 5 and 10, single-pulse TMS revealed that motor-evoked potential size and recruitment curve slopes were reduced in Vol+rTMS and rTMS_only groups and accumulated to chronic reductions by session 10. There were no changes in rMT, maximum compound action potential amplitude (Mmax), and peripherally evoked twitch forces in the trained FDI and the untrained abductor digiti minimi. Although contributions from spinal sources cannot be excluded, the data suggest that M1 may play a role in mediating neural adaptations to strength training.


Author(s):  
Kerry R. Mills

Transcranial magnetic stimulation (TMS) has been exploited to advance knowledge of corticospinal physiology and, in a number of conditions, to aid diagnosis and quantify corticospinal abnormalities. The basic physics of magnetic stimulation is described along with the effects of stimulating coils with different dimensions and shape. The effects of single TMS pulses over motor cortex to cause a descending volley of D and I waves, and their effects on spinal motor neurons resulting in a motor evoked potential (MEP) are described. Guidelines for the safe use of TMS are given. Methods to estimate useful clinical measures of corticospinal function, such as threshold, MEP amplitude, central motor conduction time, silent period and input:output relation are given, as is the means to quantify corticospinal conduction using the triple stimulation technique. The clinical utility of TMS in neurodegenerations, central demyelinating diseases, stroke, spinal cord disease, movement disorders, and functional disorders is discussed.


2015 ◽  
Vol 113 (5) ◽  
pp. 1470-1479 ◽  
Author(s):  
George M. Opie ◽  
Michael C. Ridding ◽  
John G. Semmler

Recent research has demonstrated a task-related modulation of postsynaptic intracortical inhibition within primary motor cortex for tasks requiring isolated (abduction) or synergistic (precision grip) muscle activation. The current study sought to investigate task-related changes in pre- and postsynaptic intracortical inhibition in motor cortex. In 13 young adults (22.5 ± 3.5 yr), paired-pulse transcranial magnetic stimulation (TMS) was used to measure short (SICI)- and long-interval intracortical inhibition (LICI) (i.e., postsynaptic motor cortex inhibition) in first dorsal interosseous muscle, and triple-pulse TMS was used to investigate changes in SICI-LICI interactions (i.e., presynaptic motor cortex inhibition). These measurements were obtained at rest and during muscle activation involving isolated abduction of the index finger and during a precision grip using the index finger and thumb. SICI was reduced during abduction and precision grip compared with rest, with greater reductions during precision grip. The modulation of LICI during muscle activation depended on the interstimulus interval (ISI; 100 and 150 ms) but was not different between abduction and precision grip. For triple-pulse TMS, SICI was reduced in the presence of LICI at both ISIs in resting muscle (reflecting presynaptic motor cortex inhibition) but was only modulated at the 150-ms ISI during index finger abduction. Results suggest that synergistic contractions are accompanied by greater reductions in postsynaptic motor cortex inhibition than isolated contractions, but the contribution of presynaptic mechanisms to this disinhibition is limited. Furthermore, timing-dependent variations in LICI provide additional evidence that measurements using different ISIs may not represent activation of the same cortical process.


2019 ◽  
Vol 9 (8) ◽  
pp. 177 ◽  
Author(s):  
Matt J.N. Brown ◽  
Elana R. Goldenkoff ◽  
Robert Chen ◽  
Carolyn Gunraj ◽  
Michael Vesia

Dual-site transcranial magnetic stimulation to the primary motor cortex (M1) and dorsolateral prefrontal cortex (DLPFC) can be used to probe functional connectivity between these regions. The purpose of this study was to characterize the effect of DLPFC stimulation on ipsilateral M1 excitability while participants were at rest and contracting the left- and right-hand first dorsal interosseous muscle. Twelve participants were tested in two separate sessions at varying inter-stimulus intervals (ISI: 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, and 20 ms) at two different conditioning stimulus intensities (80% and 120% of resting motor threshold). No significant effect on ipsilateral M1 excitability was found when applying a conditioning stimulus over DLPFC at any specific inter-stimulus interval or intensity in either the left or right hemisphere. Our findings suggest neither causal inhibitory nor faciliatory influences of DLPFC on ipsilateral M1 activity while participants were at rest or when performing an isometric contraction in the target hand muscle.


2018 ◽  
Vol 120 (5) ◽  
pp. 2532-2541 ◽  
Author(s):  
Bahar Moezzi ◽  
Natalie Schaworonkow ◽  
Lukas Plogmacher ◽  
Mitchell R. Goldsworthy ◽  
Brenton Hordacre ◽  
...  

Transcranial magnetic stimulation (TMS) is a technique that enables noninvasive manipulation of neural activity and holds promise in both clinical and basic research settings. The effect of TMS on the motor cortex is often measured by electromyography (EMG) recordings from a small hand muscle. However, the details of how TMS generates responses measured with EMG are not completely understood. We aim to develop a biophysically detailed computational model to study the potential mechanisms underlying the generation of EMG signals following TMS. Our model comprises a feed-forward network of cortical layer 2/3 cells, which drive morphologically detailed layer 5 corticomotoneuronal cells, which in turn project to a pool of motoneurons. EMG signals are modeled as the sum of motor unit action potentials. EMG recordings from the first dorsal interosseous muscle were performed in four subjects and compared with simulated EMG signals. Our model successfully reproduces several characteristics of the experimental data. The simulated EMG signals match experimental EMG recordings in shape and size, and change with stimulus intensity and contraction level as in experimental recordings. They exhibit cortical silent periods that are close to the biological values and reveal an interesting dependence on inhibitory synaptic transmission properties. Our model predicts several characteristics of the firing patterns of neurons along the entire pathway from cortical layer 2/3 cells down to spinal motoneurons and should be considered as a viable tool for explaining and analyzing EMG signals following TMS. NEW & NOTEWORTHY A biophysically detailed model of EMG signal generation following transcranial magnetic stimulation (TMS) is proposed. Simulated EMG signals match experimental EMG recordings in shape and amplitude. Motor-evoked potential and cortical silent period properties match experimental data. The model is a viable tool to analyze, explain, and predict EMG signals following TMS.


Sign in / Sign up

Export Citation Format

Share Document