scholarly journals Speech sounds alter facial skin sensation

2012 ◽  
Vol 107 (1) ◽  
pp. 442-447 ◽  
Author(s):  
Takayuki Ito ◽  
David J. Ostry

Interactions between auditory and somatosensory information are relevant to the neural processing of speech since speech processes and certainly speech production involves both auditory information and inputs that arise from the muscles and tissues of the vocal tract. We previously demonstrated that somatosensory inputs associated with facial skin deformation alter the perceptual processing of speech sounds. We show here that the reverse is also true, that speech sounds alter the perception of facial somatosensory inputs. As a somatosensory task, we used a robotic device to create patterns of facial skin deformation that would normally accompany speech production. We found that the perception of the facial skin deformation was altered by speech sounds in a manner that reflects the way in which auditory and somatosensory effects are linked in speech production. The modulation of orofacial somatosensory processing by auditory inputs was specific to speech and likewise to facial skin deformation. Somatosensory judgments were not affected when the skin deformation was delivered to the forearm or palm or when the facial skin deformation accompanied nonspeech sounds. The perceptual modulation that we observed in conjunction with speech sounds shows that speech sounds specifically affect neural processing in the facial somatosensory system and suggest the involvement of the somatosensory system in both the production and perceptual processing of speech.

2013 ◽  
Vol 56 (6) ◽  
pp. 1875-1881 ◽  
Author(s):  
Takayuki Ito ◽  
Alexis R. Johns ◽  
David J. Ostry

Purpose Somatosensory information associated with speech articulatory movements affects the perception of speech sounds and vice versa, suggesting an intimate linkage between speech production and perception systems. However, it is unclear which cortical processes are involved in the interaction between speech sounds and orofacial somatosensory inputs. The authors examined whether speech sounds modify orofacial somatosensory cortical potentials that were elicited using facial skin perturbations. Method Somatosensory event-related potentials in EEG were recorded in 3 background sound conditions (pink noise, speech sounds, and nonspeech sounds) and also in a silent condition. Facial skin deformations that are similar in timing and duration to those experienced in speech production were used for somatosensory stimulation. Results The authors found that speech sounds reliably enhanced the first negative peak of the somatosensory event-related potential when compared with the other 3 sound conditions. The enhancement was evident at electrode locations above the left motor and premotor area of the orofacial system. The result indicates that speech sounds interact with somatosensory cortical processes that are produced by speech-production-like patterns of facial skin stretch. Conclusion Neural circuits in the left hemisphere, presumably in left motor and premotor cortex, may play a prominent role in the interaction between auditory inputs and speech-relevant somatosensory processing.


Phonology ◽  
1998 ◽  
Vol 15 (2) ◽  
pp. 143-188 ◽  
Author(s):  
Grzegorz Dogil ◽  
Jörg Mayer

The present study proposes a new interpretation of the underlying distortion in APRAXIA OF SPEECH. Apraxia of speech, in its pure form, is the only neurolinguistic syndrome for which it can be argued that phonological structure is selectively distorted.Apraxia of speech is a nosological entity in its own right which co-occurs with aphasia only occasionally. This…conviction rests on detailed descriptions of patients who have a severe and lasting disorder of speech production in the absence of any significant impairment of speech comprehension, reading or writing as well as of any significant paralysis or weakness of the speech musculature.(Lebrun 1990: 380)Based on the experimental investigation of poorly coarticulated speech of patients from two divergent languages (German and Xhosa) it is argued that apraxia of speech has to be seen as a defective implementation of phonological representations at the phonology–phonetics interface. We contend that phonological structure exhibits neither a homogeneously auditory pattern nor a motor pattern, but a complex encoding of sequences of speech sounds. Specifically, it is maintained that speech is encoded in the brain as a sequence of distinctive feature configurations. These configurations are specified with differing degrees of detail depending on the role the speech segments they underlie play in the phonological structure of a language. The transfer between phonological and phonetic representation encodes speech sounds as a sequence of vocal tract configurations. Like the distinctive feature representation, these configurations may be more or less specified. We argue that the severe and lasting disorders in speech production observed in apraxia of speech are caused by the distortion of this transfer between phonological and phonetic representation. The characteristic production deficits of apraxic patients are explained in terms of overspecification of phonetic representations.


Author(s):  
Linda Polka ◽  
Matthew Masapollo ◽  
Lucie Ménard

Purpose: Current models of speech development argue for an early link between speech production and perception in infants. Recent data show that young infants (at 4–6 months) preferentially attend to speech sounds (vowels) with infant vocal properties compared to those with adult vocal properties, suggesting the presence of special “memory banks” for one's own nascent speech-like productions. This study investigated whether the vocal resonances (formants) of the infant vocal tract are sufficient to elicit this preference and whether this perceptual bias changes with age and emerging vocal production skills. Method: We selectively manipulated the fundamental frequency ( f 0 ) of vowels synthesized with formants specifying either an infant or adult vocal tract, and then tested the effects of those manipulations on the listening preferences of infants who were slightly older than those previously tested (at 6–8 months). Results: Unlike findings with younger infants (at 4–6 months), slightly older infants in Experiment 1 displayed a robust preference for vowels with infant formants over adult formants when f 0 was matched. The strength of this preference was also positively correlated with age among infants between 4 and 8 months. In Experiment 2, this preference favoring infant over adult formants was maintained when f 0 values were modulated. Conclusions: Infants between 6 and 8 months of age displayed a robust and distinct preference for speech with resonances specifying a vocal tract that is similar in size and length to their own. This finding, together with data indicating that this preference is not present in younger infants and appears to increase with age, suggests that nascent knowledge of the motor schema of the vocal tract may play a role in shaping this perceptual bias, lending support to current models of speech development. Supplemental Material https://doi.org/10.23641/asha.17131805


2020 ◽  
Vol 117 (11) ◽  
pp. 6255-6263 ◽  
Author(s):  
Jean-François Patri ◽  
David J. Ostry ◽  
Julien Diard ◽  
Jean-Luc Schwartz ◽  
Pamela Trudeau-Fisette ◽  
...  

Auditory speech perception enables listeners to access phonological categories from speech sounds. During speech production and speech motor learning, speakers’ experience matched auditory and somatosensory input. Accordingly, access to phonetic units might also be provided by somatosensory information. The present study assessed whether humans can identify vowels using somatosensory feedback, without auditory feedback. A tongue-positioning task was used in which participants were required to achieve different tongue postures within the /e, ε, a/ articulatory range, in a procedure that was totally nonspeech like, involving distorted visual feedback of tongue shape. Tongue postures were measured using electromagnetic articulography. At the end of each tongue-positioning trial, subjects were required to whisper the corresponding vocal tract configuration with masked auditory feedback and to identify the vowel associated with the reached tongue posture. Masked auditory feedback ensured that vowel categorization was based on somatosensory feedback rather than auditory feedback. A separate group of subjects was required to auditorily classify the whispered sounds. In addition, we modeled the link between vowel categories and tongue postures in normal speech production with a Bayesian classifier based on the tongue postures recorded from the same speakers for several repetitions of the /e, ε, a/ vowels during a separate speech production task. Overall, our results indicate that vowel categorization is possible with somatosensory feedback alone, with an accuracy that is similar to the accuracy of the auditory perception of whispered sounds, and in congruence with normal speech articulation, as accounted for by the Bayesian classifier.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoyu Tang ◽  
Xueli Wang ◽  
Xing Peng ◽  
Qi Li ◽  
Chi Zhang ◽  
...  

AbstractInhibition of return (IOR) refers to the slower response to targets appearing on the same side as the cue (valid locations) than to targets appearing on the opposite side as the cue (invalid locations). Previous behaviour studies have found that the visual IOR is larger than the audiovisual IOR when focusing on both visual and auditory modalities. Utilising the high temporal resolution of the event-related potential (ERP) technique we explored the possible neural correlates with the behaviour IOR difference between visual and audiovisual targets. The behavioural results revealed that the visual IOR was larger than the audiovisual IOR. The ERP results showed that the visual IOR effect was generated from the P1 and N2 components, while the audiovisual IOR effect was derived only from the P3 component. Multisensory integration (MSI) of audiovisual targets occurred on the P1, N1 and P3 components, which may offset the reduced perceptual processing due to audiovisual IOR. The results of early and late differences in the neural processing of the visual IOR and audiovisual IOR imply that the two target types may have different inhibitory orientation mechanisms.


Science ◽  
1968 ◽  
Vol 161 (3839) ◽  
pp. 395-396 ◽  
Author(s):  
D. Kimura ◽  
S. Folb

1988 ◽  
Vol 53 (3) ◽  
pp. 232-238 ◽  
Author(s):  
Samuel G. Fletcher

Changes in the dimensions and patterns of articulation used by three speakers to compensate for different amounts of tongue tissue excised during partial glossectomy were investigated. Place of articulation was shifted to parts of the vocal tract congruent with the speakers' surgically altered lingual morphology. Certain metrical properties of the articulatory gestures, such as width of the sibilant groove, were maintained. Intelligibility data indicated that perceptually acceptable substitute sounds could be produced by such transposed gestures.


2003 ◽  
Vol 46 (3) ◽  
pp. 689-701 ◽  
Author(s):  
Steve An Xue ◽  
Grace Jianping Hao

This investigation used a derivation of acoustic reflection (AR) technology to make cross-sectional measurements of changes due to aging in the oral and pharyngeal lumina of male and female speakers. The purpose of the study was to establish preliminary normative data for such changes and to obtain acoustic measurements of changes due to aging in the formant frequencies of selected spoken vowels and their long-term average spectra (LTAS) analysis. Thirty- eight young men and women and 38 elderly men and women were involved in the study. The oral and pharyngeal lumina of the participants were measured with AR technology, and their formant frequencies were analyzed using the Kay Elemetrics Computerized Speech Lab. The findings have delineated specific and similar patterns of aging changes in human vocal tract configurations in speakers of both genders. Namely, the oral cavity length and volume of elderly speakers increased significantly compared to their young cohorts. The total vocal tract volume of elderly speakers also showed a significant increment, whereas the total vocal tract length of elderly speakers did not differ significantly from their young cohorts. Elderly speakers of both genders also showed similar patterns of acoustic changes of speech production, that is, consistent lowering of formant frequencies (especially F1) across selected vowel productions. Although new research models are still needed to succinctly account for the speech acoustic changes of the elderly, especially for their specific patterns of human vocal tract dimensional changes, this study has innovatively applied the noninvasive and cost-effective AR technology to monitor age-related human oral and pharyngeal lumina changes that have direct consequences for speech production.


Sign in / Sign up

Export Citation Format

Share Document