Pioneers of cortical plasticity: six classic papers by Wiesel and Hubel

2008 ◽  
Vol 99 (6) ◽  
pp. 2741-2744 ◽  
Author(s):  
Martha Constantine-Paton

This essay looks at six APS classic papers published by D. H. Hubel and T. N. Wiesel that first identified a developmental critical period for environment influenced receptive field plasticity in the visual pathway. These classic papers are freely available online. These are listed here, in chronological order. Wiesel TN, Hubel DH. Effects of visual deprivation on morphology and physiology of cells in the cat's lateral geniculate body. J Neurophysiol 26: 978–993, 1963 ( http://jn.physiology.org/cgi/reprint/26/6/978 ). Hubel DH, Wiesel TN. Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J Neurophysiol 26: 994–1002, 1963 ( http://jn.physiology.org/cgi/reprint/26/6/994 ). Wiesel TN, Hubel DH. Single-cell responses in striate cortex of kittens deprived of vision in one eye. J Neurophysiol 26: 1003–1017, 1963 ( http://jn.physiology.org/cgi/reprint/26/6/1003 ). Wiesel TN, Hubel DH. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28: 1029–1040, 1965 ( http://jn.physiology.org/cgi/reprint/28/6/1029 ). Hubel DH, Wiesel TN. Binocular interaction in striate cortex of kittens reared with artificial squint. J Neurophysiol 28: 1041–1059, 1965 ( http://jn.physiology.org/cgi/reprint/28/6/1041 ). Wiesel TN, Hubel DH. Extent of recovery from the effects of visual deprivation in kittens. J Neurophysiol 28: 1060–1072, 1965 ( http://jn.physiology.org/cgi/reprint/28/6/1060 ).

2001 ◽  
Vol 138 (2) ◽  
pp. 163-172 ◽  
Author(s):  
Takuji Kasamatsu ◽  
Uri Polat ◽  
Anthony Norcia ◽  
Mark Pettet

2005 ◽  
Vol 94 (3) ◽  
pp. 1962-1970 ◽  
Author(s):  
M. M. Carrasco ◽  
K. A. Razak ◽  
S. L. Pallas

Sensory deprivation is thought to have an adverse effect on visual development and to prolong the critical period for plasticity. Once the animal reaches adulthood, however, synaptic connectivity is understood to be largely stable. We reported previously that N-methyl-d-aspartate (NMDA) receptor blockade in the superior colliculus of the Syrian hamster prevents refinement of receptive fields (RFs) in normal or compressed retinotopic projections, resulting in target neurons with enlarged RFs but normal stimulus tuning. Here we asked whether visually driven activity is necessary for refinement or maintenance of retinotopic maps or if spontaneous activity is sufficient. Animals were deprived of light either in adulthood only or from birth until the time of recording. We found that dark rearing from birth to 2 mo of age had no effect on the timing and extent of RF refinement as assessed with single unit extracellular recordings. Visual deprivation in adulthood also had no effect. Continuous dark rearing from birth into adulthood, however, resulted in a progressive loss of refinement, resulting in enlarged, asymmetric receptive fields and altered surround suppression in adulthood. Thus unlike in visual cortex, early visually driven activity is not necessary for refinement of receptive fields during development, but is required to maintain refined visual projections in adulthood. Because the map can refine normally in the dark, these results argue against a deprivation-induced delay in critical period closure, and suggest instead that early visual deprivation leaves target neurons more vulnerable to deprivation that continues after refinement.


2007 ◽  
Vol 98 (5) ◽  
pp. 2495-2496 ◽  
Author(s):  
Michael E. Goldberg

This essay looks at the historical significance of two APS classic papers that are freely available online: Wurtz RH. Visual receptive fields of striate cortex neurons in awake monkeys. J Neurophysiol 32: 727–742, 1969 ( http://jn.physiology.org/cgi/reprint/32/5/727 ). Wurtz RH. Comparison of effects of eye movements and stimulus movements on striate cortex neurons of the monkey. J Neurophysiol 32: 987–994, 1969 ( http://jn.physiology.org/cgi/reprint/32/6/987 ).


2000 ◽  
Vol 83 (6) ◽  
pp. 3377-3387 ◽  
Author(s):  
Andrey S. Stojic ◽  
Richard D. Lane ◽  
Herbert P. Killackey ◽  
Robert W. Rhoades

Neonatal forelimb removal in rats results in the development of inappropriate hindlimb inputs in the forelimb-stump representation of primary somatosensory cortex (S-I) that are revealed when GABAA and GABAB receptor activity are blocked. Experiments carried out to date have not made clear what information is being suppressed at the level of individual neurons. In this study, three potential ways in which GABA-mediated inhibition could suppress hindlimb expression in the S-I stump representation were evaluated: silencing S-I neurons with dual stump and hindlimb receptive fields, silencing neurons with receptive fields restricted to the hindlimb alone, and/or selective silencing of hindlimb inputs to neurons that normally express a stump receptive field only. These possibilities were tested using single-unit recording techniques to evaluate the receptive fields of S-I forelimb-stump neurons before, during, and after blockade of GABA receptors with bicuculline methiodide (for GABAA) and saclofen (for GABAB). Recordings were also made from normal rats for comparison. Of 92 neurons recorded from the S-I stump representation of neonatally amputated rats, only 2.2% had receptive fields that included the hindlimb prior to GABA receptor blockade. During GABA receptor blockade, 54.3% of these cells became responsive to the hindlimb, and in all but two cases, these same neurons also expressed a stump receptive field. Most of these cells (82.0%) expressed only stump receptive fields prior to GABA receptor blockade. In 71 neurons recorded from normal rats, only 5 became responsive to the hindlimb during GABA receptor blockade. GABA receptor blockade of cortical neurons, in both normal and neonatally amputated rats, resulted in significant enlargements of receptive fields as well as the emergence of receptive fields for neurons that were normally unresponsive. GABA receptor blockade also resulted in increases in both the spontaneous activity and response magnitudes of these neurons. These data support the conclusion that GABA mechanisms generally act to specifically suppress hindlimb inputs to S-I forelimb-stump neurons that normally express a receptive field on the forelimb stump only.


2016 ◽  
Vol 27 (4) ◽  
pp. 411-419 ◽  
Author(s):  
István Bókkon ◽  
Felix Scholkmann ◽  
Vahid Salari ◽  
Noémi Császár ◽  
Gábor Kapócs

AbstractIn 1963, it was suggested [Sperry, R.W. (1963). Chemoaffinity in the orderly growth of nerve fiber patterns and connections. Proc. Natl. Acad. Sci. USA 50, 703–710.] that molecular cues can direct the development of orderly connections between the eye and the brain (the “chemoaffinity hypothesis”). In the same year, the amazing degree of functional accuracy of the visual pathway in the absence of any external light/photon perception prior to birth [Wiesel, T.N and Hubel, D.H. (1963). Single-cell responses in striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017.] was discovered. These recognitions revealed that the wiring of the visual system relies on innate cues. However, how the eye-specific retinogeniculate pathway can be developed before birth without any visual experience is still an unresolved issue. In the present paper, we suggest that Müller cells (functioning as optical fibers), Müller cell cone (i.e. the inner half of the foveola that is created of an inverted cone-shaped zone of Müller cells), discrete retinal noise of rods, and intrinsically photosensitive retinal ganglion cells might have key functions by means of retinal spontaneous ultraweak photon emission in the development of eye-specific retinogeniculate pathways prior to birth.


1976 ◽  
Vol 39 (3) ◽  
pp. 501-511 ◽  
Author(s):  
K. E. Kratz ◽  
P. D. Spear

1. The possibility that effects of monocular deprivation on cat striate cortex could be reversed after the developmental critical period by removal of the normal eye was investigated. In addition, the time course of any postcriticalperiod reversal was studied. Single-unit recording was conducted in the striate cortex of kittens anesthetized with nitrous oxide.2. Six control kittens were raised with monocular lid suture until they were 4-8 mo old (group MD). In agreement with previous investigators, from 0-10% of the striate cortex cells could be driven by visual stimulation of the deprived eye in these kittens.3. Eleven kittens were raised with monocular lid suture until they were 4-5 mo old, at which time the normal eye was enucleated. In five of these (group MD-DE-immediate), recording was conducted in striate cortex on the day of the enucleation. In these animals, 29-39% of the striate cortex cells could be driven by the deprived eye. In four kittens (group MD-DE-3 mo), the deprived eye remained closed for an additional 3 mo before recording was conducted. In these animals, 17-45% of the striate cortex cells could be driven by the deprived eye. In two kittens (group MD-DE greater than 12 mo), the deprived eye remained closed for 14-15 mo after the normal eye was enucleated. In these kittens, 26-40% of the striate cortex cells could be driven by the deprived eye. Thus, removal of the normal eye after the critical period in monocularly drprived kittens results in a rapid increase in the percent of striate cortex cells that can be driven by visual stimulation of the deprived eye, and there is no further increase in responsiveness over a period of more than a year.4. The receptive-field properties of the cells which responded to the deprived eye following enucleation of the normal eye were usually abnormal; 61% of them had nonspecific receptive fields, 39% of the responsive cells were direction selective, and only 12% were both direction and orientation selective.5. The increase in responsive cells was observed in the striate cortex of both hemispheres. However, the increase was greater in the hemisphere contralateral to the deprived eye. The responsive cells tended to occur in clusters of two to four adjacent cells separated by regions containing nonresponsive cells. These clusters were not related to the horizontal cortical layers; however, they may be related to the ocular dominance columns in striate cortex.6. Several mechanisms were considered for the present findings, including neuronal sprouting, denervation supersensitivity, and release from inhibition. It was suggested that the increased responsiveness to the deprived eye was probably not the result of rapid sprouting in the 4- to 5-mo-old kittens. If this is so, then the results indicate that functional connections from the deprived layers of the DLG to the striate cortex remain following rearing with monocular deprivation...


Sign in / Sign up

Export Citation Format

Share Document