scholarly journals Age-related changes in leg proprioception: implications for postural control

2019 ◽  
Vol 122 (2) ◽  
pp. 525-538 ◽  
Author(s):  
Mélanie Henry ◽  
Stéphane Baudry

In addition to being a prerequisite for many activities of daily living, the ability to maintain steady upright standing is a relevant model to study sensorimotor integrative function. Upright standing requires managing multimodal sensory inputs to produce finely tuned motor output that can be adjusted to accommodate changes in standing conditions and environment. The sensory information used for postural control mainly arises from the vestibular system of the inner ear, vision, and proprioception. Proprioception (sense of body position and movement) encompasses signals from mechanoreceptors (proprioceptors) located in muscles, tendons, and joint capsules. There is general agreement that proprioception signals from leg muscles provide the primary source of information for postural control. This is because of their exquisite sensitivity to detect body sway during unperturbed upright standing that mainly results from variations in leg muscle length induced by rotations around the ankle joint. However, aging is associated with alterations of muscle spindles and their neural pathways, which induce a decrease in the sensitivity, acuity, and integration of the proprioceptive signal. These alterations promote changes in postural control that reduce its efficiency and thereby may have deleterious consequences for the functional independence of an individual. This narrative review provides an overview of how aging alters the proprioceptive signal from the legs and presents compelling evidence that these changes modify the neural control of upright standing.

1995 ◽  
Vol 81 (3) ◽  
pp. 991-994 ◽  
Author(s):  
Hideyuki Okuzumi ◽  
Atsushi Tanaka ◽  
Kouichi Haishi ◽  
Ken-Ichi Meguro ◽  
Hideki Yamazaki ◽  
...  

Age-related changes in both postural control and locomotion were investigated. Postural control was evaluated by magnitude of body sway for 131 healthy persons aged 21 to 84 years. Locomotion was evaluated by walking velocity for 217 healthy persons aged 21 to 88 years. Analysis showed that both abilities deteriorated for older persons and particularly age-related changes were more remarkable in locomotion.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Kamran Iqbal ◽  
Anindo Roy

We consider a simplified characterization of the postural control system that embraces two broad components: one representing the musculoskeletal dynamics in the sagittal plane and the other representing proprioceptive feedback and the central nervous system (CNS). Specifically, a planar four-segment neuromusculoskeletal model consisting of the ankle, knee, and hip degrees-of-freedom (DOFs) is described in this paper. The model includes important physiological constructs such as Hill-type muscle model, active and passive muscle stiffnesses, force feedback from the Golgi tendon organ, muscle length and rate feedback from the muscle spindle, and transmission latencies in the neural pathways. A proportional-integral-derivative (PID) controller for each individual DOF is assumed to represent the CNS analog in the modeling paradigm. Our main hypothesis states that all stabilizing PID controllers for such multisegment biomechanical models can be parametrized and analytically synthesized. Our analytical and simulation results show that the proposed representation adequately shapes a postural control that (a) possesses good disturbance rejection and trajectory tracking, (b) is robust against feedback latencies and torque perturbations, and (c) is flexible to embrace changes in the musculoskeletal parameters. We additionally present detailed sensitivity analysis to show that control under conditions of limited or no proprioceptive feedback results in (a) significant reduction in the stability margins, (b) substantial decrease in the available stabilizing parameter set, and (c) oscillatory movement trajectories. Overall, these results suggest that anatomical arrangement, active muscle stiffness, force feedback, and physiological latencies play a major role in shaping motor control processes in humans.


2010 ◽  
Vol 104 (4) ◽  
pp. 1969-1977 ◽  
Author(s):  
Michail Doumas ◽  
Ralf Th. Krampe

We investigated age-related changes in adaptation and sensory reintegration in postural control without vision. In two sessions, participants adapted their posture to sway reference and to reverse sway reference conditions, the former reducing (near eliminating) and the latter enhancing (near doubling) proprioceptive information for posture by means of support-surface rotations in proportion to body sway. Participants stood on a stable platform for 3 min (baseline) followed by 18 min of sway reference or reverse sway reference (adaptation) and finally again on a stable platform for 3 min (reintegration). Results showed that when inaccurate proprioception was introduced, anterior-posterior (AP) sway path length increased in comparable levels in the two age groups. During adaptation, young and older adults reduced postural sway at the same rate. On restoration of the stable platform in the reintegration phase, a sizeable aftereffect of increased AP path length was observed in both groups, which was greater in magnitude and duration for older adults. In line with linear feedback models of postural control, spectral analyses showed that this aftereffect differed between the two platform conditions. In the sway-referenced condition, a switch from low- to high-frequency COP sway marked the transition from reduced to normal proprioceptive information. The opposite switch was observed in the reverse sway referenced condition. Our findings illustrate age-related slowing in participants' postural control adjustments to sudden changes in environmental conditions. Over and above differences in postural control, our results implicate sensory reweighting as a specific mechanism highly sensitive to age-related decline.


2003 ◽  
Vol 13 (1) ◽  
pp. 39-52 ◽  
Author(s):  
F. Stål ◽  
P.A. Fransson ◽  
M. Magnusson ◽  
M. Karlberg

The aim of this study was to investigate the significance of information from the plantar cutaneous mechanoreceptors in postural control and whether postural control could compensate for reduced cutaneous information by adaptation. Sixteen healthy subjects were tested with eyes open or eyes closed with hypothermic and normal feet temperature during posturography where body sway was induced by vibratory proprioceptive stimulation towards both calf muscles. The hypothermic anesthesia was obtained by cooling the subject's feet in ice water for 20 minutes. Body movements were evaluated by analyzing the anteroposterior and lateral torques induced towards the supporting surface by a force platform during the posturography tests. The reduction of cutaneous sensor information from the mechanoreceptors of the feet significantly increased the vibration-induced torque variance mainly in the anteroposterior direction. However, the effects of disturbed mechanoreceptors information was rapidly compensated for through postural adaptation and torque variance was in level with that without anesthesia within 50 to 100 seconds of stimulation, both when standing with eyes open and eyes closed. Our findings suggest that somatosensory input from mechanoreceptors in the foot soles contribute significantly in maintaining postural control, but the sensory loss could be compensated for.


2019 ◽  
Vol 3 (Supplement_1) ◽  
pp. S240-S240
Author(s):  
Scott Moffat

Abstract There has been a long tradition of wayfinding and orienteering studies in humans but these have mostly neglected possible age-related differences in navigation. This field of inquiry is experiencing something of a resurgence of interest due to the development of VR technology which has brought the systematic study of large scale navigation into the laboratory and into the MRI scanning environment. Empirical studies to date identify navigation as an aspect of cognition that is vulnerable to the aging process. Functional and structural neuroimaging studies in humans suggest that age-related changes in the brain’s “navigation circuit” may underlie these behavioral age differences. Older adults also adopt unique spatial strategies and knowledge of these strategy preferences could enlighten both basic science research in spatial cognition and also inform the development of age-specific technological assistance that may extend functional independence of older adults into later life.


2020 ◽  
pp. 003151252097287
Author(s):  
Kell Grandjean da Costa ◽  
Erika K. Hussey ◽  
Eduardo Bodnariuc Fontes ◽  
Alekya Menta ◽  
John W. Ramsay ◽  
...  

A growing body of research has shown that static stance control (e.g., body sway) is influenced by cognitive demands (CD), an effect that may be related to competition for limited central resources. Measures of stance control have also been impacted by postural demands (PD) (e.g., stable vs. unstable stances). However, less is known of any possible interactions between PD and CD on static stance control in populations with intact balance control and ample cognitive resources, like young healthy adults. In this study, among the same participants, we factorially compared the impact of PD with and without CD on static stance control. Thirty-four healthy young adults wore inertial measurement units (IMU) while completing static stance tasks for 30 seconds in three different PD positions: feet apart, feet together, and tandem feet. After completing these tasks alone, participants performed these tasks with CD by concurrently completing verbal serial seven subtractions from a randomly selected three-digit number. For two dependent measures, path length and jerk, there were main effects of CD and PD but no interaction effect between these factors. For all other stance control parameters, there was only a PD main effect. Thus, adding a cognitive demand to postural demands, while standing upright, may have an independent impact on stance control, but CD does not seem to interact with PD. These results suggest that young healthy adults may be less sensitive to simple PD and CD due to their greater inherent balance control and available cognitive resources. Future work might explore more complex PD and CD combinations to determine the boundaries under which young adults’ resources are taxed.


2020 ◽  
Vol 35 (1) ◽  
pp. 58-67
Author(s):  
Gabriel Felipe Moretto ◽  
Felipe Balistieri Santinelli ◽  
Tiago Penedo ◽  
Luis Mochizuki ◽  
Natalia Madalena Rinaldi ◽  
...  

Background Studies on short-term upright quiet standing tasks have presented contradictory findings about postural control in people with Parkinson’s disease (pwPD). Prolonged trial durations might better depict body sway and discriminate pwPD and controls. Objective The aim of this study was to investigate postural control in pwPD during a prolonged standing task. Methods A total of 26 pwPD and 25 neurologically healthy individuals performed 3 quiet standing trials (60 s) before completing a constrained prolonged standing task for 15 minutes. Motion capture was used to record body sway (Vicon, 100 Hz). To investigate the body sway behavior during the 15 minutes of standing, the analysis was divided into three 5-minute-long phases: early, middle, and late. The following body sway parameters were calculated for the anterior-posterior (AP) and medial-lateral (ML) directions: velocity, root-mean-square, and detrended fluctuations analysis (DFA). The body sway area was also calculated. Two-way ANOVAs (group and phases) and 1-way ANOVA (group) were used to compare these parameters for the prolonged standing and quiet standing, respectively. Results pwPD presented smaller sway area ( P < .001), less complexity (DFA; AP: P < .009; ML: P < .01), and faster velocity (AP: P < .002; ML: P < .001) of body sway compared with the control group during the prolonged standing task. Although the groups swayed similarly (no difference for sway area) during quiet standing, they presented differences in sway area during the prolonged standing task ( P < .001). Conclusions Prolonged standing task reduced adaptability of the postural control system in pwPD. In addition, the prolonged standing task may better analyze the adaptability of the postural control system in pwPD.


Physiology ◽  
2016 ◽  
Vol 31 (2) ◽  
pp. 95-107 ◽  
Author(s):  
D. S. Peterson ◽  
F. B. Horak

People with Parkinson's disease exhibit debilitating gait impairments, including gait slowness, increased step variability, and poor postural control. A widespread supraspinal locomotor network including the cortex, cerebellum, basal ganglia, and brain stem contributes to the control of human locomotion, and altered activity of these structures underlies gait dysfunction due to Parkinson's disease.


Sign in / Sign up

Export Citation Format

Share Document