scholarly journals EEG oscillations: how are they modulated during different phases of repetitive movements?

2017 ◽  
Vol 118 (1) ◽  
pp. 4-6
Author(s):  
Antonella Macerollo ◽  
Matt J. N. Brown

Voluntary movements are planned through the relative timing between submovements of movement sequences as part of the motor program. Different movement phases are characterized by specific amplitude modulation of cortical oscillations. The latter represent neurophysiological correlates of specific synchronization or desynchronization of different neuronal groups. In this Neuro Forum, we review recent evidence regarding the temporal relation between neurophysiological correlates of different phases of a repetitive motor task using electroencephalography and source localization using individualized MRI.

2021 ◽  
Vol 11 (10) ◽  
pp. 4330
Author(s):  
Andrea Lucchese ◽  
Salvatore Digiesi ◽  
Kübra Akbaş ◽  
Carlotta Mummolo

The ability of an agent to accomplish a trajectory during a certain motor task depends on the fit between external (environment) and internal (agent) constraints, also known as affordance. A model of difficulty for a generalized reaching motor task is proposed as an affordance-related measure, as perceived by a specific agent for a given environment and task. By extending the information-based Index of Difficulty of a trajectory, a stochastic model of difficulty is formulated based on the observed variability of spatial trajectories executed by a given agent during a repetitive motor task. The model is tested on an experimental walking dataset available in the literature, where the repetitive stride movement of differently aged subjects (14 “old” subjects aged 50–73; 20 “young” subjects aged 21–37) at multiple speed conditions (comfortable, ~30% faster, ~30% slower) is analyzed. Reduced trajectory variability in older as compared to younger adults results in a higher Index of Difficulty (slower: +24%, p < 0.0125; faster: +38%, p < 0.002) which is interpreted in this context as reduced affordance. The model overcomes the limits of existing difficulty measures by capturing the stochastic dependency of task difficulty on a subject’s age and average speed. This model provides a benchmarking tool for motor performance in biomechanics and ergonomics applications.


Author(s):  
William Gaetz ◽  
Christos Papadelis ◽  
Tony W. Wilson

This chapter examines clinical motor mapping with magnetoencephalography (MEG). Motor cortex functional mapping procedures were first conducted by neurosurgeons who famously stimulated their patient’s exposed brain during surgery and then systematically documented the responses observed from the activated muscles of the body. Numerous neuroimaging-based functional mapping techniques followed, such as functional magnetic resonance imaging (fMRI), transcranial magnetic stimulation (TMS), high-density electroencephalography (HD-EEG), and MEG, which are currently used to map the motor areas in relation to isolated volitional movements. The use of MEG for presurgical functional mapping has become a standard component of clinical MEG practice. Indeed, knowledge regarding the location of eloquent MEG motor representations is valuable for presurgical planning and can improve outcomes by limiting the production of postsurgical deficits of motor function. Meanwhile, source localization challenges using equivalent current dipole (ECD) models have given way to newer methods, such as beamformer spatial filters, which have been validated clinically using electrical stimulation. It should also be noted that it is becoming increasingly evident that motor cortical oscillations are changing consistently over the life span, and thus consideration of the patient’s age will likely aid the interpretation of results.


1980 ◽  
Vol 43 (1) ◽  
pp. 137-150 ◽  
Author(s):  
P. E. Roland ◽  
E. Skinhoj ◽  
N. A. Lassen ◽  
B. Larsen

1. This paper reports regional cerebral blood flow (rCBF) measurements in 254 cortical regions with 133Xe injected into the internal carotid artery in 19 patients, none of whom had any major neurological defect. The purpose was to demonstrate the pattern of cortical activity, as revealed by rCBF increases, during two types of unilateral voluntary movement in extrapersonal space: a) the maze test, series of fast isolated movements in various directions in a frame, executed under verbal command; and b) the drawing of a spiral in the air. 2. Both types of movements were associated with increases of rCBF in the supplementary motor area (bilaterally), the convexity part of the premotor area (bilaterally), the primary sensorimotor hand and arm area (contralaterally), and in the superior and inferior parietal region (bilaterally). 3. During the maze test there were, in addition, bilateral focal increases of the blood flow in the auditory areas, the inferior frontal regions, and the frontal eye fields. 4. It is concluded that the supplementary motor areas, which are also active during programming and execution of movement sequences in intrapersonal space (33), elaborate programs for motor subroutines necessary in skilled voluntary motion. The convexity parts of the premotor areas are activated when a new motor program is established or a previously learned motor program is modulated. The primary motor area is the exclusive executive locus for voluntary movements of the hand and arm. 5. Voluntary movements in extrapersonal space only are associated with activation of the parietal regions. These areas are assumed to provide information to the motor programming neurons about the demanded direction of motion in extrapersonal space in relation to proprioceptive reference systems. 6. The increase of rCBF in the auditory areas, the inferior frontal regions, and the frontal eye fields during the maze test were ascribed to the processing of auditory information. 7. Both tests are accompanied by a diffuse increase of the hemispheric blood flow (approximately 10%), which is assumed to be a parallel to the commonly known desynchronization of the EEG during mental work.


1954 ◽  
Vol 48 (6) ◽  
pp. 455-467 ◽  
Author(s):  
Ina McD. Bilodeau ◽  
Edward A. Bilodeau
Keyword(s):  

1955 ◽  
Author(s):  
Ina Mcd. Bilodeau ◽  
Edward A. Bilodeau
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document