scholarly journals The Intermediation Role of Central Cyclooxygenase Products TXA2, PGF2α, PGE, and PGD in Orexin-evoked Cardiovascular Effects

Author(s):  
Burçin Altınbaş ◽  
Gökcen Guvenc Bayram ◽  
Murat Yalcin

Abstract Centrally injected some prostaglandins (PG) and orexin (OX) produce similar cardiovascular responses. We have recently reported that both central cyclooxygenase (COX) and central lipoxygenase (LOX) enzymes mediate the cardiovascular effects of OX. In the current study, we aimed to investigate the mediating effects of thromboxane (TX) A2, PGD, PGE, and PGF2a, as COX pathway subproducts known to be active in cardiovascular control, on cardiovascular responses elicited by OX. Intracerebroventricular (i.c.v.) injection of OX increased cardiovascular levels in normotensive male Sprague Dawley rats. Moreover, central pretreatment with the TXA2 synthesis inhibitor furegrelate, PGF2α receptor antagonist, PGF2α-dimethylamine, PGE, and PGD receptor antagonist AH6809 partially attenuated the centrally administered OX -induced pressor and tachycardic cardiovascular responses in rats. In conclusion, our results show that i.c.v. injection of OX increases blood pressure and heart rate. Moreover, TXA2, PGF2α, PGE, and PGD mediate, at least in part, the centrally applied OX -evoked pressor and tachycardic responses. The results suggest that centrally injected OX -evoked pressor and tachycardia responses may also be mediated by arachidonic acid metabolites other than TXA2, PGF2α, PGE, and PGD.

2003 ◽  
Vol 90 (2) ◽  
pp. 780-785 ◽  
Author(s):  
Shuang Chen ◽  
Sheng-Xing Ma

The purpose of these studies was to determine the role of gracile nucleus and the effects of l-arginine-derived nitric oxide (NO) synthesis in the nucleus on the cardiovascular responses to electroacupuncture (EA) stimulation of “Zusanli” (ST36). Arterial blood pressure and heart rate were monitored during EA stimulation of ST36 following microinjections of agents into gracile nucleus. EA ST36 produced depressor and bradycardiac responses in anesthetized Sprague-Dawley rats. The cardiovascular responses to EA ST36 were blocked by bilateral microinjection of lidocaine into gracile nucleus. Microinjection of l-arginine into gracile nucleus facilitated the hypotensive and bradycardiac responses to EA ST36. The cardiovascular responses to EA ST36 were attenuated by bilateral microinjection of neuronal NO synthase (nNOS) antisense oligos into gracile nucleus. Microinjection of nNOS sense oligos into gracile nucleus did not alter the cardiovascular response to EA ST36. The results demonstrate that a blockade of neuronal conduction in the gracile nucleus inhibits the cardiovascular responses to EA ST36. The hypotensive and bradycardiac responses to EA ST36 are modified by influences of l-arginine-derived NO synthesis in the gracile nucleus. We conclude that NO plays an important role in mediating the cardiovascular responses to EA ST36 through gracile nucleus.


2000 ◽  
Vol 278 (6) ◽  
pp. G924-G929 ◽  
Author(s):  
M. Ali Gülpinar ◽  
Ayhan Bozkurt ◽  
Tamer Coşkun ◽  
Nefise B. Ulusoy ◽  
Berrak Ç. Yeǧen

In addition to its insulinotropic action, exogenously administered glucagon-like peptide (GLP-1) inhibits gastropancreatic motility and secretion via central pathways. The aims of the present study were to evaluate the effects of exogenous GLP-1-(7–36) amide on fecal output and to investigate the role of endogenous GLP-1 on stress-induced colonic activity. With the use of a stereotaxic instrument, adult male Sprague-Dawley rats weighing 200–250 g were fitted with stainless steel cerebroventricular guide cannulas under ketamine anesthesia. A group of rats were placed in Bollman-type cages to induce restraint stress. Fecal output monitored for 2 h was increased significantly by intracerebroventricular GLP-1 to 500, 1,000, and 3,000 pmol/rat ( P < 0.05–0.01), whereas intraperitoneal GLP-1 had no effect. Intracerebroventricular administration of the GLP-1 receptor antagonist exendin-(9–39) (10 nmol/rat) reversed the increases induced by GLP-1 (500 pmol/rat; P < 0.01). Similar results were also observed with the injection of corticotropin-releasing factor receptor antagonist astressin (10 μg/rat icv). The significant increase in fecal pellet output induced by restraint stress was also decreased by both intracerebroventricular exendin (10 nmol/rat) and astressin (10 μg/rat; P < 0.01–0.001). These results suggest that GLP-1 participates in the central, but not peripheral, regulation of colonic motility via its own receptor and that GLP-1 is likely to be a candidate brain-gut peptide that acts as a physiological modulator of stress-induced colonic motility.


2011 ◽  
Vol 89 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Murat Yalcin

The aim of the current study was to determine the central cyclooxygenase (COX) pathway and central thromboxane signaling in the cardiovascular effects evoked by arachidonic acid (AA). As a main control for the study, different doses of AA (75, 150, or 300 µg) were administered intracerebroventricularly (i.c.v.). Centrally injected AA dose- and time-dependently increased mean arterial pressure and decreased heart rate in conscious normotensive Sprague–Dawley rats. The maximal cardiovascular effects of AA were observed at min 10 of the injection and lasted almost 30 min. To investigate the central mechanism of the AA-induced cardiovascular effect in conscious normotensive animals, pretreatment with nonselective COX inhibitor indomethacin (200 µg; i.c.v.), thromboxane A2 (TXA2) synthesis inhibitor furegrelate (250 or 500 µg; i.c.v.), or TXA2 receptor antagonist SQ-29548 (8 or 16 µg; i.c.v.) was carried out 15 min before AA (150 µg; i.c.v.) injection. While indomethacin completely prevented the pressor and bradycardic responses to AA, furegrelate and SQ-29548 attenuated these effects in part in awake normotensive rats. In conclusion, these findings suggest that the pressor and bradycardic cardiovascular effects of centrally injected AA are dependent on COX activity being totally central and the TXA2 signaling pathway being subsequently central, at least in part.


2001 ◽  
Vol 280 (5) ◽  
pp. R1388-R1392 ◽  
Author(s):  
Barbara T. Alexander ◽  
Kathy L. Cockrell ◽  
A. Nicole Rinewalt ◽  
Jason N. Herrington ◽  
Joey P. Granger

The purpose of this study was to determine the role of endothelin in mediating the renal hemodynamic and arterial pressure changes observed during chronic ANG II-induced hypertension. ANG II (50 ng · kg−1 · min−1) was chronically infused into the jugular vein by miniosmotic pump for 2 wk in male Sprague-Dawley rats with and without endothelin type A (ETA)-receptor antagonist ABT-627 (5 mg · kg−1 · day−1) pretreatment. Arterial pressure increased in ANG II rats compared with control rats (149 ± 5 vs. 121 ± 6 mmHg, P< 0.05, respectively). Renal expression of preproendothelin mRNA was increased by ∼50% in both the medulla and cortex of ANG II rats. The hypertensive effect of ANG II was completely abolished in rats pretreated with the ETA-receptor antagonist (114 ± 5 mmHg, P < 0.05). Glomerular filtration rate was decreased by 33% in ANG II rats, and this response was attenuated in rats pretreated with ETA-receptor antagonist. These data indicate that activation of the renal endothelin system by ANG II may play an important role in mediating chronic renal and hypertensive actions of ANG II.


1999 ◽  
Vol 276 (5) ◽  
pp. H1482-H1492 ◽  
Author(s):  
Wen-Bin Len ◽  
Julie Y. H. Chan

We investigated the role of glutamatergic projection from the parabrachial nucleus (PBN) complex to the rostral ventrolateral medulla (RVLM) in the PBN-induced suppression of reflex bradycardia in adult Sprague-Dawley rats that were maintained under pentobarbital anesthesia. Under stimulus conditions that did not appreciably alter the baseline systemic arterial pressure and heart rate, electrical (10-s train of 0.5-ms pulses, at 10–20 μA and 10–20 Hz) or chemical (l-glutamate, 1 nmol) stimulation of the ventrolateral regions and Köelliker-Fuse (KF) subnucleus of the PBN complex significantly suppressed the reflex bradycardia in response to transient hypertension evoked by phenylephrine (5 μg/kg iv). The PBN-induced suppression of reflex bradycardia was appreciably reversed by bilateral microinjection into the RVLM of the N-methyl-d-aspartate (NMDA)-receptor antagonist MK-801 (500 pmol) or the non-NMDA-receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (50 pmol). Anatomically, most of the retrogradely labeled neurons in the ventrolateral regions and KF subnucleus of the ipsilateral PBN complex after microinjection of fast blue into the RVLM were also immunoreactive to anti-glutamate antiserum. These results suggest that a direct glutamatergic projection to the RVLM from topographically distinct regions of the PBN complex may participate in the suppression of reflex bradycardia via activation of both NMDA and non-NMDA receptors at the RVLM.


2017 ◽  
Vol 312 (5) ◽  
pp. E420-E428 ◽  
Author(s):  
Alexandre A. da Silva ◽  
John E. Hall ◽  
Sydney P. Moak ◽  
Jackson Browning ◽  
Haley J. Houghton ◽  
...  

This study tested whether ganglionic blockade or hepatic vagotomy attenuates the chronic central nervous system (CNS)-mediated antidiabetic and cardiovascular effects of leptin. Male Sprague-Dawley rats were instrumented with telemetry probes and arterial and venous catheters for determination of blood pressure (BP), heart rate (HR), blood sampling, and intravenous (iv) infusions. An intracerebroventricular (ICV) cannula was placed into the brain lateral ventricle for infusion of leptin or vehicle. After control measurements, streptozotocin (STZ) was injected iv (50 mg/kg) to induce diabetes, and 5 days later leptin ( n = 6) or saline vehicle ( n = 5) was infused ICV for 12 days via osmotic pumps. Beginning on day 6 of leptin treatment, the ganglionic blocker hexamethonium (15 mg·kg−1·day−1 iv) was infused, while leptin infusion was continued, to assess the role of the autonomic nervous system. Induction of diabetes was associated with increases in blood glucose (98 ± 7 to 350 ± 19 mg/dl), food intake (23 ± 3 to 43 ± 3 g/day), decreases in HR (−70 ± 11 beats/min), polyuria, and increased water consumption, which were all completely normalized by ICV leptin infusion. Although hexamethonium attenuated leptin’s effect on HR, it failed to impair leptin’s ability to restore euglycemia or to prevent the polyuria or increased water intake in STZ-diabetic rats. We also found that after pretreatment with hexamethonium ( n = 8), ICV leptin infusion, during continued ganglionic blockade, completely normalized blood glucose in diabetic rats. In addition, selective hepatic vagotomy did not attenuate leptin’s ability to restore euglycemia in diabetic rats. These results suggest that leptin’s powerful chronic CNS antidiabetic actions are mediated primarily via nonautonomic mechanisms.


2021 ◽  
pp. 1-8
Author(s):  
S. Melker Hagsäter ◽  
Robert Pettersson ◽  
Axel Holmäng ◽  
Elias Eriksson

Abstract Objective: Whereas numerous experimental and clinical studies suggest a complex involvement of serotonin in the regulation of anxiety, it remains to be clarified if the dominating impact of this transmitter is best described as anxiety-reducing or anxiety-promoting. The aim of this study was to assess the impact of serotonin depletion on acquisition, consolidation, and expression of conditioned fear. Methods: Male Sprague–Dawley rats were exposed to foot shocks as unconditioned stimulus and assessed with respect to freezing behaviour when re-subjected to context. Serotonin depletion was achieved by administration of a serotonin synthesis inhibitor, para-chlorophenylalanine (PCPA) (300 mg/kg daily × 3), (i) throughout the period from (and including) acquisition to (and including) expression, (ii) during acquisition but not expression, (iii) after acquisition only, and (iv) during expression only. Results: The time spent freezing was significantly reduced in animals that were serotonin-depleted during the entire period from (and including) acquisition to (and including) expression, as well as in those being serotonin-depleted during either acquisition only or expression only. In contrast, PCPA administrated immediately after acquisition, that is during memory consolidation, did not impact the expression of conditioned fear. Conclusion: Intact serotonergic neurotransmission is important for both acquisition and expression of context-conditioned fear.


2011 ◽  
Vol 300 (5) ◽  
pp. H1781-H1787 ◽  
Author(s):  
Sachin S. Kandlikar ◽  
Gregory D. Fink

Excess sympathetic nervous system activity (SNA) is linked to human essential and experimental hypertension. To test whether sympathetic activation is associated with a model of deoxycorticosterone acetate (DOCA)-salt hypertension featuring two kidneys and a moderate elevation of blood pressure, we measured whole body norepinephrine (NE) spillover as an index of global SNA. Studies were conducted in chronically catheterized male Sprague-Dawley rats drinking water containing 1% NaCl and 0.2% KCl. After a 7-day surgical recovery and a 3-day control period, a DOCA pellet (50 mg/kg) was implanted subcutaneously in one group of rats (DOCA), while the other group underwent sham implantation (Sham). NE spillover was measured on control day 2 and days 7 and 14 after DOCA administration or sham implantation. During the control period, mean arterial pressure (MAP) was similar in Sham and DOCA rats. MAP was significantly increased in the DOCA group compared with the Sham group after DOCA administration ( day 14: Sham = 109 ± 5.3, DOCA = 128 ± 3.6 mmHg). However, plasma NE concentration, clearance, and spillover were not different in the two groups at any time. To determine whether selective sympathetic activation to the kidneys contributes to hypertension development, additional studies were performed in renal denervated (RDX) and sham-denervated (Sham-DX) rats. MAP, measured by radiotelemetry, was similar in both groups during the control and DOCA treatment periods. In conclusion, global SNA is not increased during the development of mild DOCA-salt hypertension, and fully intact renal nerves are not essential for hypertension development in this model.


1994 ◽  
Vol 267 (2) ◽  
pp. H751-H756 ◽  
Author(s):  
A. W. Cowley ◽  
E. Szczepanska-Sadowska ◽  
K. Stepniakowski ◽  
D. Mattson

Despite the well-recognized vasoconstrictor and fluid-retaining actions of vasopressin, prolonged administration of arginine vasopressin (AVP) to normal animals or humans fails to produce sustained hypertension. The present study was performed to elucidate the role of the V1 receptor in determining the ability of AVP to produce sustained hypertension. Conscious Sprague-Dawley rats with implanted catheters were infused with the selective V1 agonist, [Phe2,Ile3,Orn8]vasopressin (2 ng.kg-1.min-1), for 14 days in amounts that were acutely nonpressor. Blood pressure (MAP), heart rate (HR), body weight, and water intake (WI) were determined daily. Plasma AVP, plasma catecholamines norepinephrine and epinephrine, plasma osmolality, and electrolyte concentration were determined before and on days 1 and 7 of infusion. MAP increased significantly by 10.4 +/- 4.5 mmHg on day 1 and rose to 22 +/- 5 mmHg above control by day 14 (transient decrease on days 6-9) and then fell to control levels after the infusion was stopped. HR did not change significantly. Plasma AVP immunoreactivity increased from 2.5 +/- 0.3 to 10.9 +/- 2.1 pg/ml, whereas norepinephrine tended to fall only on day 1, with epinephrine only slightly elevated on day 7. No evidence of fluid retention was found, and rats lost sodium only on the first day of V1 agonist infusion. Body weight increased throughout the study but was unrelated to the changes of MAP. We conclude that chronic stimulation of V1 receptors results in sustained hypertension in rats.


Sign in / Sign up

Export Citation Format

Share Document