scholarly journals Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans

2014 ◽  
Vol 112 (6) ◽  
pp. 1439-1446 ◽  
Author(s):  
Yukiko Makihara ◽  
Richard L. Segal ◽  
Jonathan R. Wolpaw ◽  
Aiko K. Thompson

In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion.

2019 ◽  
Vol 122 (1) ◽  
pp. 435-446 ◽  
Author(s):  
N. Mrachacz-Kersting ◽  
U. G. Kersting ◽  
P. de Brito Silva ◽  
Y. Makihara ◽  
L. Arendt-Nielsen ◽  
...  

Changing the H reflex through operant conditioning leads to CNS multisite plasticity and can affect previously learned skills. To further understand the mechanisms of this plasticity, we operantly conditioned the initial component (M1) of the soleus stretch reflex. Unlike the H reflex, the stretch reflex is affected by fusimotor control, comprises several bursts of activity resulting from temporally dispersed afferent inputs, and may activate spinal motoneurons via several different spinal and supraspinal pathways. Neurologically normal participants completed 6 baseline sessions and 24 operant conditioning sessions in which they were encouraged to increase (M1up) or decrease (M1down) M1 size. Five of eight M1up participants significantly increased M1; the final M1 size of those five participants was 143 ± 15% (mean ± SE) of the baseline value. All eight M1down participants significantly decreased M1; their final M1 size was 62 ± 6% of baseline. Similar to the previous H-reflex conditioning studies, conditioned reflex change consisted of within-session task-dependent adaptation and across-session long-term change. Task-dependent adaptation was evident in conditioning session 1 with M1up and by session 4 with M1down. Long-term change was evident by session 10 with M1up and by session 16 with M1down. Task-dependent adaptation was greater with M1up than with the previous H-reflex upconditioning. This may reflect adaptive changes in muscle spindle sensitivity, which affects the stretch reflex but not the H reflex. Because the stretch reflex is related to motor function more directly than the H reflex, M1 conditioning may provide a valuable tool for exploring the functional impact of reflex conditioning and its potential therapeutic applications. NEW & NOTEWORTHY Since the activity of stretch reflex pathways contributes to locomotion, changing it through training may improve locomotor rehabilitation in people with CNS disorders. Here we show for the first time that people can change the size of the soleus spinal stretch reflex through operant conditioning. Conditioned stretch reflex change is the sum of task-dependent adaptation and long-term change, consistent with H-reflex conditioning yet different from it in the composition and amount of the two components.


2006 ◽  
Vol 96 (4) ◽  
pp. 2144-2150 ◽  
Author(s):  
Xiang Yang Chen ◽  
Lu Chen ◽  
Yi Chen ◽  
Jonathan R. Wolpaw

Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex (SSR), induces activity-dependent plasticity in the spinal cord and might be used to improve locomotion after spinal cord injury. To further assess the potential clinical significance of spinal reflex conditioning, this study asks whether another well-defined spinal reflex pathway, the disynaptic pathway underlying reciprocal inhibition (RI), can also be operantly conditioned. Sprague-Dawley rats were implanted with electromyographic (EMG) electrodes in right soleus (SOL) and tibialis anterior (TA) muscles and a stimulating cuff on the common peroneal (CP) nerve. When background EMG in both muscles remained in defined ranges, CP stimulation elicited the TA H-reflex and SOL RI. After collection of control data for 20 days, each rat was exposed for 50 days to up-conditioning (RIup mode) or down-conditioning (RIdown mode) in which food reward occurred if SOL RI evoked by CP stimulation was more (RIup mode) or less (RIdown mode) than a criterion. TA and SOL background EMG and TA M response remained stable. In every rat, RI conditioning was successful (i.e., change ≥20% in the correct direction). In the RIup rats, final SOL RI averaged 171± 28% (mean ± SE) of control, and final TA H-reflex averaged 114 ± 14%. In the RIdown rats, final SOL RI averaged 37 ± 13% of control, and final TA H-reflex averaged 60 ± 18%. Final SOL RI and TA H-reflex sizes were significantly correlated. Thus like the SSR and the H-reflex, RI can be operantly conditioned; and conditioning one reflex can affect another reflex as well.


2003 ◽  
Vol 90 (5) ◽  
pp. 3572-3578 ◽  
Author(s):  
Xiang Yang Chen ◽  
Lu Chen ◽  
Jonathan R. Wolpaw

The brain shapes spinal cord function throughout life. Operant conditioning of the H-reflex, the electrical analog of the spinal stretch reflex (SSR), is a relatively simple model for exploring the spinal cord plasticity underlying this functional change and may provide a new method for modifying spinal cord reflexes after spinal cord injury. In response to an operant conditioning protocol, rats can gradually increase (i.e., up-training mode) or decrease (i.e., down-training mode) the soleus H-reflex. This study explored the effects of midthoracic transection of the ipsilateral lateral column (LC) (rubrospinal, vestibulospinal, and reticulospinal tracts), the dorsal column corticospinal tract (CST), or the dorsal column ascending tract (DA) on maintenance of an H-reflex increase that has already occurred. Rats were implanted with EMG electrodes in the right soleus muscle and a nerve-stimulating cuff on the right posterior tibial nerve. After initial (i.e., control) H-reflex size was determined, the rats were exposed for 50 days to the up-training mode, in which reward was given when the H-reflex was above a criterion value. H-reflex size gradually rose to 168 ± 12% (mean ± SE) of its initial value. Each rat then received an LC, CST, or DA transection and continued under the up-training mode for 50 more days. None of the transections abolished the H-reflex increase. H-reflex size increased further to 197 ± 19% of its initial value and did not differ significantly among LC, CST, and DA rats ( P > 0.78 by ANOVA). Although earlier studies show that the main CST is needed for acquisition of H-reflex up-training and down-training and for maintenance of down-training, this study shows that it is not needed for maintenance of up-training. It adds to the evidence that H-reflex conditioning changes the spinal cord and that the spinal cord plasticity associated with up-training is different from that associated with down-training.


2006 ◽  
Vol 96 (4) ◽  
pp. 1718-1727 ◽  
Author(s):  
Jonathan S. Carp ◽  
Ann M. Tennissen ◽  
Xiang Yang Chen ◽  
Jonathan R. Wolpaw

Rats, monkeys, and humans can alter the size of their spinal stretch reflex and its electrically induced analog, the H-reflex (HR), when exposed to an operant conditioning paradigm. Because this conditioning induces plasticity in the spinal cord, it offers a unique opportunity to identify the neuronal sites and mechanisms that underlie a well-defined change in a simple behavior. To facilitate these studies, we developed an HR operant conditioning protocol in mice, which are better suited to genetic manipulation and electrophysiological spinal cord study in vitro than rats or primates. Eleven mice under deep surgical anesthesia were implanted with tibial nerve stimulating electrodes and soleus and gastrocnemius intramuscular electrodes for recording ongoing and stimulus-evoked EMG activity. During the 24-h/day computer-controlled experiment, mice received a liquid reward for either increasing (up-conditioning) or decreasing (down-conditioning) HR amplitude while maintaining target levels of ongoing EMG and directly evoked EMG (M-responses). After 3–7 wk of conditioning, the HR amplitude was 133 ± 7% (SE) of control for up-conditioning and 71 ± 8% of control for down-conditioning. HR conditioning was successful (i.e., ≥20% change in HR amplitude in the appropriate direction) in five of six up-conditioned animals (mean final HR amplitude = 139 ± 5% of control HR for successful mice) and in four of five down-conditioned animals (mean final HR amplitude = 63 ± 8% of control HR for successful mice). These effects were not attributable to differences in the net level of motoneuron pool excitation, stimulation strength, or distribution of HR trials throughout the day. Thus mice exhibit HR operant conditioning comparable with that observed in rats and monkeys.


2015 ◽  
Vol 113 (7) ◽  
pp. 2232-2241 ◽  
Author(s):  
Chadwick B. Boulay ◽  
Xiang Yang Chen ◽  
Jonathan R. Wolpaw

Sensorimotor cortex exerts both short-term and long-term control over the spinal reflex pathways that serve motor behaviors. Better understanding of this control could offer new possibilities for restoring function after central nervous system trauma or disease. We examined the impact of ongoing sensorimotor cortex (SMC) activity on the largely monosynaptic pathway of the H-reflex, the electrical analog of the spinal stretch reflex. In 41 awake adult rats, we measured soleus electromyographic (EMG) activity, the soleus H-reflex, and electrocorticographic activity over the contralateral SMC while rats were producing steady-state soleus EMG activity. Principal component analysis of electrocorticographic frequency spectra before H-reflex elicitation consistently revealed three frequency bands: μβ (5–30 Hz), low γ (γ1; 40–85 Hz), and high γ (γ2; 100–200 Hz). Ongoing (i.e., background) soleus EMG amplitude correlated negatively with μβ power and positively with γ1 power. In contrast, H-reflex size correlated positively with μβ power and negatively with γ1 power, but only when background soleus EMG amplitude was included in the linear model. These results support the hypothesis that increased SMC activation (indicated by decrease in μβ power and/or increase in γ1 power) simultaneously potentiates the H-reflex by exciting spinal motoneurons and suppresses it by decreasing the efficacy of the afferent input. They may help guide the development of new rehabilitation methods and of brain-computer interfaces that use SMC activity as a substitute for lost or impaired motor outputs.


Agriculture ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 215
Author(s):  
Liudmila Tripolskaja ◽  
Asta Kazlauskaite-Jadzevice ◽  
Virgilijus Baliuckas ◽  
Almantas Razukas

Ex-arable land-use change is a global issue with significant implications for climate change and impact for phytocenosis productivity and soil quality. In temperate humid grassland, we examined the impact of climate variability and changes of soil properties on 23 years of grass productivity after conversion of ex-arable soil to abandoned land (AL), unfertilized, and fertilized managed grassland (MGunfert and MGfert, respectively). This study aimed to investigate the changes between phytocenosis dry matter (DM) yield and rainfall amount in May–June and changes of organic carbon (Corg) stocks in soil. It was found that from 1995 to 2019, rainfall in May–June tended to decrease. The more resistant to rainfall variation were plants recovered in AL. The average DM yield of MGfert was 3.0 times higher compared to that in the AL. The DM yields of AL and MG were also influenced by the long-term change of soil properties. Our results showed that Corg sequestration in AL was faster (0.455 Mg ha−1 year−1) than that in MGfert (0.321 Mg ha−1 year−1). These studies will be important in Arenosol for selecting the method for transforming low-productivity arable land into MG.


2015 ◽  
Vol 113 (5) ◽  
pp. 1598-1615 ◽  
Author(s):  
Samira P. Bandaru ◽  
Shujun Liu ◽  
Stephen G. Waxman ◽  
Andrew M. Tan

Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI.


2007 ◽  
Vol 98 (2) ◽  
pp. 878-887 ◽  
Author(s):  
Xiang Yang Chen ◽  
Shreejith Pillai ◽  
Yi Chen ◽  
Yu Wang ◽  
Lu Chen ◽  
...  

Sensorimotor cortex (SMC) modifies spinal cord reflex function throughout life and is essential for operant conditioning of the H-reflex. To further explore this long-term SMC influence over spinal cord function and its possible clinical uses, we assessed the effect of long-term SMC stimulation on the soleus H-reflex. In freely moving rats, the soleus H-reflex was measured 24 h/day for 12 wk. The soleus background EMG and M response associated with H-reflex elicitation were kept stable throughout. SMC stimulation was delivered in a 20-day-on/20-day-off/20-day-on protocol in which a train of biphasic 1-ms pulses at 25 Hz for 1 s was delivered every 10 s for the on-days. The SMC stimulus was automatically adjusted to maintain a constant descending volley. H-reflex size gradually increased during the 20 on-days, stayed high during the 20 off-days, and rose further during the next 20 on-days. In addition, the SMC stimulus needed to maintain a stable descending volley rose steadily over days. It fell during the 20 off-days and rose again when stimulation resumed. These results suggest that SMC stimulation, like H-reflex operant conditioning, induces activity-dependent plasticity in both the brain and the spinal cord and that the plasticity responsible for the H-reflex increase persists longer after the end of SMC stimulation than that underlying the change in the SMC response to stimulation.


2011 ◽  
Vol 1389 ◽  
pp. 194-199 ◽  
Author(s):  
Youngkyung Kim ◽  
Young-Keun Park ◽  
Hwi-young Cho ◽  
Junesun Kim ◽  
Young Wook Yoon

2002 ◽  
Vol 87 (2) ◽  
pp. 645-652 ◽  
Author(s):  
Xiang Yang Chen ◽  
Jonathan R. Wolpaw

Descending activity from the brain shapes spinal cord reflex function throughout life, yet the mechanisms responsible for this spinal cord plasticity are poorly understood. Operant conditioning of the H-reflex, the electrical analogue of the spinal stretch reflex, is a simple model for investigating these mechanisms. An earlier study in the Sprague-Dawley rat showed that acquisition of an operantly conditioned decrease in the soleus H-reflex is not prevented by mid-thoracic transection of the ipsilateral lateral column (LC), which contains the rubrospinal, reticulospinal, and vestibulospinal tracts, and is prevented by transection of the dorsal column, which contains the main corticospinal tract (CST) and the dorsal column ascending tract (DA). The present study explored the effects of CST or DA transection on acquisition of an H-reflex decrease, and the effects of LC, CST, or DA transection on maintenance of an established decrease. CST transection prior to conditioning prevented acquisition of H-reflex decrease, while DA transection did not do so. CST transection after H-reflex decrease had been acquired led to gradual loss of the decrease over 10 days, and resulted in an H-reflex that was significantly larger than the original, naive H-reflex. In contrast, LC or DA transection after H-reflex decrease had been acquired did not affect maintenance of the decrease. These results, in combination with the earlier study, strongly imply that in the rat the corticospinal tract (CST) is essential for acquisition and maintenance of operantly conditioned decrease in the H-reflex and that other major spinal cord pathways are not essential. This previously unrecognized aspect of CST function gives insight into the processes underlying acquisition and maintenance of motor skills and could lead to novel methods for inducing, guiding, and assessing recovery of function after spinal cord injury.


Sign in / Sign up

Export Citation Format

Share Document