Active movement restores veridical event-timing after tactile adaptation

2012 ◽  
Vol 108 (8) ◽  
pp. 2092-2100 ◽  
Author(s):  
Alice Tomassini ◽  
Monica Gori ◽  
David Burr ◽  
Giulio Sandini ◽  
Maria Concetta Morrone

Growing evidence suggests that time in the subsecond range is tightly linked to sensory processing. Event-time can be distorted by sensory adaptation, and many temporal illusions can accompany action execution. In this study, we show that adaptation to tactile motion causes a strong contraction of the apparent duration of tactile stimuli. However, when subjects make a voluntary motor act before judging the duration, it annuls the adaptation-induced temporal distortion, reestablishing veridical event-time. The movement needs to be performed actively by the subject: passive movement of similar magnitude and dynamics has no effect on adaptation, showing that it is the motor commands themselves, rather than reafferent signals from body movement, which reset the adaptation for tactile duration. No other concomitant perceptual changes were reported (such as apparent speed or enhanced temporal discrimination), ruling out a generalized effect of body movement on somatosensory processing. We suggest that active movement resets timing mechanisms in preparation for the new scenario that the movement will cause, eliminating inappropriate biases in perceived time. Our brain seems to utilize the intention-to-move signals to retune its perceptual machinery appropriately, to prepare to extract new temporal information.

2002 ◽  
Vol 88 (4) ◽  
pp. 1968-1979 ◽  
Author(s):  
Stephan R. Williams ◽  
C. Elaine Chapman

This study investigated the relative importance of central and peripheral signals for movement-related gating by comparing the time course and magnitude of movement-related decreases in tactile detection during a reference motor task, active isotonic digit 2 (D2) abduction, with that seen during three test tasks: a comparison with active isometric D2 abduction (movement vs. no movement) evaluated the contribution of peripheral reafference generated by the movement to gating; a comparison with passive D2 abduction (motor command vs. no motor command; movement generated by an external agent) allowed us to evaluate the contribution of the central motor command to tactile gating; and finally, the inclusion of an active “no apparatus,” or freehand, D2 abduction task allowed us to evaluate the potential contribution of incidental peripheral reafference generated by the position detecting apparatus to the results (apparatus vs. no apparatus). Weak electrical stimuli (2-ms pulse; intensity, 90% detected at rest) were applied to D2 at different delays before and after movement onset or electromyographic (EMG) activity onset. Significant time-dependent movement-related decreases in detection were obtained with all tasks. When the results obtained during the active isotonic movement task were compared with those obtained in the three test tasks, no significant differences in the functions describing detection performance over time were seen. The results obtained with the isometric D2 abduction task show that actual movement of a body part is not necessary to diminish detection of tactile stimuli in a manner similar to the decrease produced by isotonic, active movement. In the passive test task, the peak decrease in detection clearly preceded the onset of passive movement (by 38 ms) despite the lack of a motor command and, presumably, no movement-related peripheral reafference. A slightly but not significantly earlier decrease was obtained with active movement (49 ms before movement onset). Expectation of movement likely did not contribute to the results because stimulus detection during sham passive movement trials (subjects expected but did not receive a passive movement) was not different from performance at rest (no movement). The results obtained with passive movement are best explained by invoking backward masking of the test stimuli by movement-related reafference and demonstrate that movement-related reafference is sufficient to produce decreases in detection with a time course and amplitude not significantly different from that produced by active movement.


2006 ◽  
Vol 33 (S 1) ◽  
Author(s):  
E. Sarpaczki ◽  
M. Blatow ◽  
E. Nennig ◽  
A. Durst ◽  
D. Rasche ◽  
...  

2002 ◽  
Vol 88 (3) ◽  
pp. 1400-1406 ◽  
Author(s):  
Matthew C. Hagen ◽  
David H. Zald ◽  
Tricia A. Thornton ◽  
José V. Pardo

Three inferior prefrontal regions in the monkey receive afferents from somatosensory cortices: the orbitofrontal cortex (OFC), the ventral area of the principal sulcus, and the anterior frontal operculum. To determine whether these areas show responses to tactile stimuli in humans, we examined data from an ongoing series of PET studies of somatosensory processing. Unlike previous work showing ventral frontal activity to hedonic (pleasant/unpleasant) sensory stimulation, the tactile stimuli used in these studies had a neutral hedonic valence. Our data provide evidence for at least two discrete ventral frontal brain regions responsive to somatosensory stimulation: 1) the posterior inferior frontal gyrus (IFG) and adjacent anterior frontal operculum, and 2) the OFC. The former region (posterior IFG/anterior frontal operculum) may have a more specific role in attending to tactile stimuli.


2020 ◽  
Author(s):  
Sheo Shankar Pandey ◽  
Fernanda N.C. Vasconcelos ◽  
Nian Wang

Candidatus Liberibacter asiaticus (CLas), the causal agent of citrus huanglongbing, colonizes inside the phloem and is naturally transmitted by the Asian citrus psyllid (ACP). Here, we investigated the spatiotemporal CLas colonization in different tissues post ACP transmission. At 75 day-post-ACP-removal (DPR), CLas was detected in roots of all trees, but in the mature leaf of only one tree, of the nine plants that were successfully infected via ACP transmission, consistent with the model that CLas moves passively from the source to sink. CLas was detected in 11.1%, and 43.1% mature leaves, which were unfed by ACPs during transmission, at 75, and 365 DPR, respectively, unveiling active movement to the source tissue. The difference in colonization timing of sink and source tissues indicates CLas is capable of both passive and active movement with passive movement being dominant. At 225 DPR, leaves fed by ACPs during the young stage showed the highest ratio of HLB symptomatic leaves and highest CLas titer, followed by that of leaves emerged post ACP removal, and mature leaves not fed by ACPs. Importantly, our data showed that ACPs were unable to transmit CLas via feeding on mature leaves. It is estimated that it takes at most three years for CLas to infect the whole tree. Overall, the spatiotemporal detection of CLas in different tissues after ACP transmission helps visualize the infection process of CLas in planta and subsequent HLB symptom development, and provides the knowledge supporting that young leaves should be the focus of HLB management.


1975 ◽  
Vol 40 (3) ◽  
pp. 755-761 ◽  
Author(s):  
Brian Craske ◽  
Martin Crawshaw

The position sense of a stationary arm was investigated subsequent to an horizontally adductive movement with axis the shoulder joint. The right arm was the treated arm: it reached a test position actively, using minimal voluntary effort, or passively from each of 10 starting positions. The blindfolded S localized the index finger of the treated arm by attempting to touch it with the index finger of his left hand. The results indicate that subsequent to active movement the final position of a limb is more accurately known than a position resulting from passive movement. A second finding is that concomitant with both forms of limb placement there is a unidirectional drift of perceived limb position over trials.


Author(s):  
Aimee J. Nelson ◽  
Azra Premji ◽  
Navjot Rai ◽  
Tasnuva Hoque ◽  
Mark Tommerdahl ◽  
...  

Background:Abnormal somatosensory processing may contribute to motor impairments observed in Parkinson's disease (PD). Dopaminergic medications have been shown to alter somatosensory processing such that tactile perception is improved. In PD, it remains unclear whether the temporal sequencing of tactile stimuli is altered and if dopaminergic medications alter this perception.Methods:Somatosensory tactile perception was investigated using temporal order judgment in patients with Parkinson's disease on and off dopaminergic medications and in aged-matched healthy controls. Measures of temporal order judgment were acquired using computer controlled stimulation to digits 2 and 3 on the right hand and subjects were required to determine which stimuli occurred first. Two experimental tasks were compared, temporal order judgment without and with synchronization whereby digits 2 and 3 were vibrated synchronously in advance of the temporal order judgment sequence of stimuli.Results:Temporal order judgment in PD patients off and on medications were similar to controls. Temporal order judgment preceded by synchronous vibration impaired tactile acuity in controls and in PD off medications to similar degrees, but this perceptual impairment by synchronous vibration was not present in PD patients on medications.Conclusions:These findings suggest that dopamine in PD reduces cortico-cortical connectivity within SI and this leads to changes in tactile sensitivity.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e4310 ◽  
Author(s):  
Stefaan Van Damme ◽  
Charlotte Vanden Bulcke ◽  
Linda Van Den Berghe ◽  
Louise Poppe ◽  
Geert Crombez

Background Patients with chronic orofacial pain due to temporomandibular disorders (TMD) display alterations in somatosensory processing at the jaw, such as amplified perception of tactile stimuli, but the underlying mechanisms remain unclear. This study investigated one possible explanation, namely hypervigilance, and tested if TMD patients with unilateral pain showed increased attending to somatosensory input at the painful side of the jaw. Methods TMD patients with chronic unilateral orofacial pain (n = 20) and matched healthy volunteers (n = 20) performed a temporal order judgment (TOJ) task indicated which one of two tactile stimuli, presented on each side of the jaw, they had perceived first. TOJ methodology allows examining spatial bias in somatosensory processing speed. Furthermore, after each block of trials, the participants rated the perceived intensity of tactile stimuli separately for both sides of the jaw. Finally, questionnaires assessing pain catastrophizing, fear-avoidance beliefs, and pain vigilance, were completed. Results TMD patients tended to perceive tactile stimuli at the painful jaw side as occurring earlier in time than stimuli at the non-painful side but this effect did not reach conventional levels of significance (p = .07). In the control group, tactile stimuli were perceived as occurring simultaneously. Secondary analyses indicated that the magnitude of spatial bias in the TMD group is positively associated with the extent of fear-avoidance beliefs. Overall, intensity ratings of tactile stimuli were significantly higher in the TMD group than in the control group, but there was no significant difference between the painful and non-painful jaw side in the TMD patients. Discussion The hypothesis that TMD patients with chronic unilateral orofacial pain preferentially attend to somatosensory information at the painful side of the jaw was not statistically supported, although lack of power could not be ruled out as a reason for this. The findings are discussed within recent theories of pain-related attention.


2021 ◽  
Author(s):  
Luigi Balasco ◽  
Marco Pagani ◽  
Luca Pangrazzi ◽  
Evgenia Schlosman ◽  
Lorenzo Mattioni ◽  
...  

Abnormal tactile response is considered an integral feature of Autism Spectrum Disorders (ASDs), and hypo-responsiveness to tactile stimuli is often associated with the severity of ASDs core symptoms. Patients with Phelan-McDermid syndrome (PMS), caused by mutations in the SHANK3 gene, show ASD-like symptoms associated with aberrant tactile responses. However, the neural underpinnings of these somatosensory abnormalities are still poorly understood. Here we investigated, in Shank3b-/- adult mice, the neural substrates of whisker-guided behaviors, a key component of rodents' interaction with the surrounding environment. To this aim, we assessed whisker-dependent behaviors in Shank3b-/- adult mice and age-matched controls, using the textured novel object recognition (tNORT) and whisker nuisance (WN) test. Shank3b-/- mice showed deficits in whisker-dependent texture discrimination in tNORT and behavioral hypo-responsiveness to repetitive whisker stimulation in WN. Notably, sensory hypo-responsiveness was accompanied by a significantly reduced activation of the primary somatosensory cortex (S1) and hippocampus, as measured by c-fos mRNA in situ hybridization, a proxy of neuronal activity following whisker stimulation. Moreover, resting-state fMRI showed a significantly reduced S1-hippocampal connectivity in Shank3b mutant mice. Together, these findings suggest that impaired crosstalk between hippocampus and S1 might underlie Shank3b-/- hypo-reactivity to whisker-dependent cues, highlighting a potentially generalizable form of dysfunctional somatosensory processing in ASD.


1980 ◽  
Vol 44 (6) ◽  
pp. 1122-1138 ◽  
Author(s):  
J. R. Wolpaw

1. Monkeys were trained to maintain hand position against a range of constant forces. Short-latency responses to passive wrist extension or flexion, as well as short-latency responses to stretch of a single wrist muscle, were recorded from units in areas 4, 3, 1, and 2. These responses were compared to unit activity during active holding and during active movement. 2. Units related to active holding and to active movement were most common in areas 4 and 2. Three-quarters of these units displayed a specific correlation between their passive and active behaviors. Thus, a unit excited by passive extension was excited during active holding against extension force and excited during an active flexion movement. This behavior is similar to the expected concurrent behavior of muscle stretch receptors. By demonstrating that a significant number of task-related units give qualitatively similar responses to passive extension and passive flexion, the results appear to explain the disagreement among previous studies (5, 9, 36) in regard to area 4 behavior during active and passive movements. 3. Area 4 units responded similarly to passive wrist extension and electromagnetic stretch of a single flexor muscle occurring in the absence of wrist extension, indicating that muscle stretch was important in determining area 4 unit responses to passive movements. 4. The similarity of area 4 behavior to area 2 behavior in active and passive situations, along with the observation that area 2 responses to passive movements occurred several milliseconds earlier than those of area 4, emphasizes the importance of area 2 in motor performance and is consistent with significant area 2 mediation of area 4 responses. 5. Results support the hypothesis of an oligosynaptic transcortical pathway (22, 32, 34), beginning in large part with muscle stretch receptors. Furthermore, the correlation noted between short-latency responses to passive movement and task-related activity suggests that this transcortical pathway not only mediates responses to passive movement but may be responsible, to a significant degree, for task-related activity during undisturbed performance. Thus, active position maintenance and active movement were probably accomplished, at least in part, by increasing and decreasing the influence of this pathway on specific area 4 neurons and thereby producing the patterns of area 4 activity responsible for task performance.


2019 ◽  
Vol 30 (10) ◽  
pp. 1522-1532 ◽  
Author(s):  
Tomohiro Amemiya ◽  
Yasushi Ikei ◽  
Michiteru Kitazaki

The limited space immediately surrounding our body, known as peripersonal space (PPS), has been investigated by focusing on changes in the multisensory processing of audio-tactile stimuli occurring within or outside the PPS. Some studies have reported that the PPS representation is extended by body actions such as walking. However, it is unclear whether the PPS changes when a walking-like sensation is induced but the body neither moves nor is forced to move. Here, we show that a rhythmic pattern consisting of walking-sound vibrations applied to the soles of the feet, but not the forearms, boosted tactile processing when looming sounds were located near the body. The findings suggest that an extension of the PPS representation can be triggered by stimulating the soles in the absence of body action, which may automatically drive a motor program for walking, leading to a change in spatial cognition around the body.


Sign in / Sign up

Export Citation Format

Share Document