scholarly journals Branching Thalamic Afferents Link Action and Perception

2003 ◽  
Vol 90 (2) ◽  
pp. 539-548 ◽  
Author(s):  
R. W. Guillery

Recent observations of single axons and review of older literature show that axons afferent to the thalamus commonly branch, sending one branch to the thalamus and another to a motor or premotor center of the brain stem. That is, the messages that the thalamus relays to the cerebral cortex can be regarded as copies of motor instructions. This pattern of axonal branching is reviewed, particularly for the somatosensory and the visual pathways. The extent to which this anatomical evidence relates to views that link action to perception is explored. Most pathways going through the thalamus to the cortex are already involved in motor mechanisms. These motor links occur before and during activity in the parallel and hierarchical corticocortical circuitry that currently forms the focus of many studies of perceptual processing.

1997 ◽  
Vol 78 (2) ◽  
pp. 960-976 ◽  
Author(s):  
Fredrik Ullén ◽  
Tatiana G. Deliagina ◽  
Grigori N. Orlovsky ◽  
Sten Grillner

Ullén, Fredrik, Tatiana G. Deliagina, Grigori N. Orlovsky, and Sten Grillner. Visual pathways for postural control and negative phototaxis in lamprey. J. Neurophysiol. 78: 960–976, 1997. The functional roles of the major visuo-motor pathways were studied in lamprey. Responses to eye illumination were video-recorded in intact and chronically lesioned animals. Postural deficits during spontaneous swimming were analyzed to elucidate the roles of the lesioned structures for steering and postural control. Eye illumination in intact lampreys evoked the dorsal light response, that is, a roll tilt toward the light, and negative phototaxis, that is a lateral turn away from light, and locomotion. Complete tectum-ablation enhanced both responses. During swimming, a tendency for roll tilts and episodes of vertical upward swimming were seen. The neuronal circuitries for dorsal light response and negative phototaxis are thus essentially extratectal. Responses to eye illumination were abolished by contralateral pretectum-ablation but normal after the corresponding lesion on the ipsilateral side. Contralateral pretectum thus plays an important role for dorsal light response and negative phototaxis. To determine the roles of pretectal efferent pathways for the responses, animals with a midmesencephalichemisection were tested. Noncrossed pretecto-reticular fibers from the ipsilateral pretectum and crossed fibers from the contralateral side were transected. Eye illumination on the lesioned side evoked negative phototaxis but no dorsal light response. Eye illumination on the intact side evoked an enhanced dorsal light response, whereas negative phototaxis was replaced with straight locomotion or positive phototaxis. The crossed pretecto-reticular projection is thus most important for the dorsal light response, whereas the noncrossed projection presumably plays the major role for negative phototaxis. Transection of the ventral rhombencephalic commissure enhanced dorsal light response; negative phototaxis was retained with smaller turning angles than normal. Spontaneous locomotion showed episodes of backward swimming and deficient roll control (tilting tendency). Transections of different spinal pathways were performed immediately caudal to the brain stem. All spinal lesions left dorsal light response in attached state unaffected; this response presumably is mediated by the brain stem. Spinal hemisection impaired all ipsiversive yaw turns; the animals spontaneously rolled to the intact side. Bilateral transection of the lateral columns impaired all yaw turns, whereas roll control and dorsal light response were normal. After transection of the medial spinal cord, yaw turns still could be performed whereas dorsal light response was suppressed or abolished, and a roll tilting tendency during spontaneous locomotion was seen. We conclude that the contralateral optic nerve projection to the pretectal region is necessary and sufficient for negative phototaxis and dorsal light response. The crossed descending pretectal projection is most important for dorsal light response, whereas the noncrossed one is most important for negative phototaxis. In the most rostral spinal cord, fibers for lateral yaw turns travel mainly in the lateral columns, whereas fibers for roll turns travel mainly in the medial spinal cord.


2019 ◽  
pp. 12-31
Author(s):  
Alan J. McComas

This chapter outlines the history of research meetings dealing with consciousness, beginning with that hosted by Herbert Jasper in the Laurentian mountains of Quebec in 1953. It starts, however, with a brief discussion on ancient scientific approaches to medicine, which was jump-started by the Greek physician, Hippocrates. Afterward, the chapter skips forward two millennia to major figures who made breakthroughs in the field of brain science. It also touches on a central debate that reached its climax a little later, as to which part of the brain was responsible for consciousness. The chapter considers whether it was the cerebral cortex, as had been the prevailing assumption, or if it was the brain stem.


1972 ◽  
Vol 34 (3) ◽  
pp. 827-833 ◽  
Author(s):  
Robert J. Harmon ◽  
Robert N. Emde

A microcephalic human newborn exhibited a repertoire of spontaneous REM behaviors, including REM smiling, at rates characteristic of a normal newborn comparison group. Cyclical alternations between behavioral REM and non-REM states were also documented. A detailed post-mortem examination supported an inference that this infant had severely impaired functioning of cerebral cortex and limbic system during its brief postuterine life. The findings support a tentative conclusion that the observed spontaneous REM behaviors are mediated through the brain stem and that cerebral structures, including the limbic system, are not necessary for this mediation. The findings are also consistent with previous evidence that the seat of organization of REM and non-REM sleep is in the brain stem.


2019 ◽  
pp. 103-122
Author(s):  
Alan J. McComas

This chapter tells the story of the discovery of the reticular activating system. At the same time, the chapter traces various attempts to address the larger question of “waking” the cortex and bringing it to a state of consciousness. It turns to two scientists, Horace Magoun and Giuseppe Moruzzi, both of whom conducted experiments to explore the possible effects on the cerebral cortex of stimulating the brain stem. Since the brain’s reticular formation ended just below the thalamus on either side, it was logical to see if it might alter cortical excitability. The chapter shows how Magoun and Moruzzi came to the conclusion that, through its action on the excitability of the cortex, the reticular formation could control the wakefulness of the brain.


1936 ◽  
Vol 82 (337) ◽  
pp. 99-118 ◽  
Author(s):  
W. E. Le Gros Clark

The sensory material which provides the essential data for conscious activity is conveyed to the higher functional levels of the brain by impulses which stream up the olfactory tracts, the optic tracts, and the tracts of the brain-stem and spinal cord. With the exception only of the olfactory impulses, all these sensory impulses are filtered through the thalamic region of the brain, or diencephalon, before they can be relayed to the cerebral cortex which forms the anatomical substratum of the more elaborate mental processes. It is an interesting fact that, while the functional localization in the cerebral cortex and the functional localization in regard to the numerous fibre tracts in the brain-stem and spinal cord have been established in quite considerable detail by anatomical, physiological and clinical studies extending over many years, the localization and the connections of the various relay mechanisms in the diencephalon still remain obscure. Since the nature of the sensory material which is delivered to the cerebral cortex depends ultimately on the influences and modifications which may be imposed on the afferent impulses during their passage through the diencephalon, it becomes a matter of extreme importance, from the point of view of the study of the physiology of sensation and of psychological interpretation of sensory experience, that attention should be concentrated on this diencephalic mechanism. The minute anatomy of the diencephalon has recently been worked out in great detail, and it is now the task of the anatomist, physiologist and clinician to discover the functional significance of the numerous cell groups and fibre tracts which have been defined.


1983 ◽  
Vol 61 (12) ◽  
pp. 1487-1493 ◽  
Author(s):  
Laurie J. S. Vandewater ◽  
William J. Racz ◽  
Albert R. Norris ◽  
Erwin Buncel

Methylmercury distribution, biotransformation, and neurotoxicity in the brain of male Swiss albino mice were investigated. Mice were orally dosed with [203Hg]methylmercury chloride (10 mg/kg) for 1 to 9 days. Methylmercury was evenly distributed among the posterior cerebral cortex, subcortex, brain stem, and cerebellum. The anterior cerebral cortex had a significantly higher methylmercury concentration than the rest of the brain. The distribution of methylmercury's inorganic mercury metabolite was found to be uneven in the brain. The pattern of distribution was cerebellum > brain stem > subcortex > cerebral cortex. The order of the severity of histological damage was cerebral cortex > cerebellum > subcortex > brain stem. There was no correlation between methylmercury distribution in the brain and structural brain damage. However, there was a relationship between the distribution of methylmercury's inorganic mercury metabolite and structural damage in the anterior cerebral cortex (positive correlation) and the anterior subcortex (negative correlation). There was also a positive correlation between the fraction of methylmercury's metabolite of the total mercury present and structural brain damage in the anterior cerebral cortex. This study suggests that biotransformation may have a role in mediating methylmercury neurotoxicity.


2002 ◽  
Vol 30 (02n03) ◽  
pp. 369-378 ◽  
Author(s):  
Ching-Liang Hsieh ◽  
Chin-Hsin Wu ◽  
Jaung-Geng Lin ◽  
Chuang-Chien Chiu ◽  
Mike Chen ◽  
...  

Our previous studies have shown that the cerebral cortex modulates the physiological mechanisms of acupuncture. However, the role of the brain stem and spinal cord in acupuncture remains unclear. The present study investigated the action of the brain stem and spinal cord in acupuncture. A total of eight healthy adult volunteers were studied. Electrical stimulation of the supraorbital nerve in the supraorbital foramen was used to evoke the blink reflex. Electrical stimulation of the posterior tibial nerve in the right popliteal fossa was used to evoke the H reflex. Electroacupuncture (EA) of 2 Hz was applied to the Zusanli acupoint in the right or left leg. The area of the R1 and R2 components of the blink reflex, and the greatest H/M ratio and H-M interval of the H reflex were measured before EA, during EA and at various post-EA periods. These data were analyzed quantitatively by a computerized electromyographic examination system. The results indicate that EA did not change the R1 and ipsilateral R2 components of the blink reflex. EA depressed the contralateral R2 component of the blink reflex 10 minutes and 40 minutes after the start of EA, but not after 5 minutes. EA applied to the Zusanli acupoint did not change the H/M ratio or the H-M interval of the H reflex. The results of this study indicate that 2 Hz EA of the Zusanli acupoint does not change the R1 component of the blink reflex, and the H/M ratio and the H-M interval of the H reflex, suggesting that 2 Hz EA does not change the monosynaptic reflex in the brain stem and spinal cord in humans. We also found that EA at 2-Hz depressed the contralateral but not the ipsilateral R2 component of the blink reflex, suggesting that longer pathways, perhaps including the cerebral cortex, may play a role in the physiological mechanisms responsible for the effectiveness of acupuncture.


Sign in / Sign up

Export Citation Format

Share Document