Diversity and excitability of deep-layer entorhinal cortical neurons in a model of temporal lobe epilepsy

2012 ◽  
Vol 108 (6) ◽  
pp. 1724-1738 ◽  
Author(s):  
Jyotsna Pilli ◽  
Saad Abbasi ◽  
Max Richardson ◽  
Sanjay S. Kumar

The entorhinal cortex (ERC) is critically implicated in temporal lobe epileptogenesis—the most common type of adult epilepsy. Previous studies have suggested that epileptiform discharges likely initiate in seizure-sensitive deep layers (V–VI) of the medial entorhinal area (MEA) and propagate into seizure-resistant superficial layers (II–III) and hippocampus, establishing a lamina-specific distinction between activities of deep- versus superficial-layer neurons and their seizure susceptibilities. While layer II stellate cells in MEA have been shown to be hyperexcitable and hypersynchronous in patients and animal models of temporal lobe epilepsy (TLE), the fate of neurons in the deep layers under epileptic conditions and their overall contribution to epileptogenicity of this region have remained unclear. We used whole cell recordings from slices of the ERC in normal and pilocarpine-treated epileptic rats to characterize the electrophysiological properties of neurons in this region and directly assess changes in their excitatory and inhibitory synaptic drive under epileptic conditions. We found a surprising heterogeneity with at least three major types and two subtypes of functionally distinct excitatory neurons. However, contrary to expectation, none of the major neuron types characterized showed any significant changes in their excitability, barring loss of excitatory and inhibitory inputs in a subtype of neurons whose dendrite extended into layer III, where neurons are preferentially lost during TLE. We confirmed hyperexcitability of layer II neurons in the same slices, suggesting minimal influence of deep-layer input on superficial-layer neuron excitability under epileptic conditions. These data show that deep layers of ERC contain a more diverse population of excitatory neurons than previously envisaged that appear to belie their seizure-sensitive reputation.

2021 ◽  
Vol 22 (8) ◽  
pp. 3860
Author(s):  
Elisa Ren ◽  
Giulia Curia

Temporal lobe epilepsy (TLE) is one of the most common types of focal epilepsy, characterized by recurrent spontaneous seizures originating in the temporal lobe(s), with mesial TLE (mTLE) as the worst form of TLE, often associated with hippocampal sclerosis. Abnormal epileptiform discharges are the result, among others, of altered cell-to-cell communication in both chemical and electrical transmissions. Current knowledge about the neurobiology of TLE in human patients emerges from pathological studies of biopsy specimens isolated from the epileptogenic zone or, in a few more recent investigations, from living subjects using positron emission tomography (PET). To overcome limitations related to the use of human tissue, animal models are of great help as they allow the selection of homogeneous samples still presenting a more various scenario of the epileptic syndrome, the presence of a comparable control group, and the availability of a greater amount of tissue for in vitro/ex vivo investigations. This review provides an overview of the structural and functional alterations of synaptic connections in the brain of TLE/mTLE patients and animal models.


Author(s):  
Dai Agari ◽  
Kazutaka Jin ◽  
Yosuke Kakisaka ◽  
Akitake Kanno ◽  
Makoto Ishida ◽  
...  

Author(s):  
Mohammed M. Jan ◽  
Mark Sadler ◽  
Susan R. Rahey

Electroencephalography (EEG) is an important tool for diagnosing, lateralizing and localizing temporal lobe seizures. In this paper, we review the EEG characteristics of temporal lobe epilepsy (TLE). Several “non-standard” electrodes may be needed to further evaluate the EEG localization, Ictal EEG recording is a major component of preoperative protocols for surgical consideration. Various ictal rhythms have been described including background attenuation, start-stop-start phenomenon, irregular 2-5 Hz lateralized activity, and 5-10 Hz sinusoidal waves or repetitive epileptiform discharges. The postictal EEG can also provide valuable lateralizing information. Postictal delta can be lateralized in 60% of patients with TLE and is concordant with the side of seizure onset in most patients. When patients are being considered for resective surgery, invasive EEG recordings may be needed. Accurate localization of the seizure onset in these patients is required for successful surgical management.


1998 ◽  
Vol 32 (1-2) ◽  
pp. 309-320 ◽  
Author(s):  
Martin Vreugdenhil ◽  
Cornelis W.M van Veelen ◽  
Peter C van Rijen ◽  
Fernando H Lopes da Silva ◽  
Wytse J Wadman

2020 ◽  
Vol 132 (2) ◽  
pp. 605-614 ◽  
Author(s):  
Sanjeet S. Grewal ◽  
Mohammed Ali Alvi ◽  
William J. Perkins ◽  
Gregory D. Cascino ◽  
Jeffrey W. Britton ◽  
...  

OBJECTIVEAlmost 30% of the patients with suspected temporal lobe epilepsy (TLE) have normal results on MRI. Success rates for resection of MRI-negative TLE are less favorable, ranging from 36% to 76%. Herein the authors describe the impact of intraoperative electrocorticography (ECoG) augmented by opioid activation and its effect on postoperative seizure outcome.METHODSAdult and pediatric patients with medically resistant MRI-negative TLE who underwent standardized ECoG at the time of their elective anterior temporal lobectomy (ATL) with amygdalohippocampectomy between 1990 and 2016 were included in this study. Seizure recurrence comprised the primary outcome of interest and was assessed using Kaplan-Meier and multivariable Cox regression analysis plots based on distribution of interictal epileptiform discharges (IEDs) recorded on scalp electroencephalography, baseline and opioid-induced IEDs on ECoG, and extent of resection.RESULTSOf the 1144 ATLs performed at the authors’ institution between 1990 and 2016, 127 (11.1%) patients (81 females) with MRI-negative TLE were eligible for this study. Patients with complete resection of tissue generating IED recorded on intraoperative ECoG were less likely to have seizure recurrence compared to those with incomplete resection on univariate analysis (p < 0.05). No difference was found in seizure recurrence between patients with bilateral independent IEDs and unilateral IEDs (p = 0.15), presence or absence of opioid-induced epileptiform activation (p = 0.61), or completeness of resection of tissue with opioid-induced IEDs on intraoperative ECoG (p = 0.41).CONCLUSIONSThe authors found that incomplete resection of IED-generating tissue on intraoperative ECoG was associated with an increased chance of seizure recurrence. However, they found that induction of epileptiform activity with intraoperative opioid activation did not provide useful intraoperative data predictive of improving operative results for temporal lobectomy in MRI-negative epilepsy.


Seizure ◽  
2013 ◽  
Vol 22 (9) ◽  
pp. 735-742 ◽  
Author(s):  
Daniel San-Juan ◽  
Adriana Patricia M. Mayorga ◽  
Juan de Dios Del Castillo Calcáneo ◽  
Maricarmen Fernández González-Aragón ◽  
Mario Alonso-Vanegas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document