Neuronal Activity in Primate Orbitofrontal Cortex Reflects the Value of Time

2005 ◽  
Vol 94 (4) ◽  
pp. 2457-2471 ◽  
Author(s):  
Matthew R. Roesch ◽  
Carl R. Olson

Neurons in monkey orbitofrontal cortex (OF) are known to respond to reward-predicting cues with a strength that depends on the value of the predicted reward as determined 1) by intrinsic attributes including size and quality and 2) by extrinsic factors including the monkey's state of satiation and awareness of what other rewards are currently available. We pose here the question whether another extrinsic factor critical to determining reward value—the delay expected to elapse before delivery—influences neuronal activity in OF. To answer this question, we recorded from OF neurons while monkeys performed a memory-guided saccade task in which a cue presented early in each trial predicted whether the delay before the monkey could respond and receive a reward of fixed size would be short or long. OF neurons tended to fire more strongly in response to a cue predicting a short delay. The tendency to fire more strongly in anticipation of a short delay was correlated across neurons with the tendency to fire more strongly before a large reward. We conclude that neuronal activity in OF represents the time-discounted value of the expected reward.

2005 ◽  
Vol 94 (2) ◽  
pp. 1469-1497 ◽  
Author(s):  
Matthew R. Roesch ◽  
Carl R. Olson

In macaque monkeys performing a memory-guided saccade task for a reward of variable size, neuronal activity in several areas of frontal cortex is stronger when the monkey anticipates a larger reward. This effect might depend on either the size or the value of the reward. To distinguish between these possibilities, we recorded from neurons in frontal cortex while controlling value through a manipulation of time rather than amount. A cue presented at the beginning of each trial, predicted the length of the delay during which the monkey would have to maintain fixation before performing a saccade and receiving a reward of fixed size. Predicting a short delay had effects closely similar to those of predicting a large reward: 1) monkeys were more motivated when working for a reward at short delay, 2) neurons tended to fire more strongly before a short delay, 3) individual neurons firing more strongly before a short delay tended also to fire more strongly before a large reward, and 4) the tendency to fire more strongly before a short delay was far more pronounced in premotor areas caudal to the arcuate sulcus than in association areas rostral to it. The association areas, in contrast, were marked by a tendency for neurons to fire more strongly at the end of the long delay. We conclude that predicting a short delay, like predicting a large reward, induces an enhancement of neuronal activity related to motivational modulation of the monkey's preparatory state.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Yang Xie ◽  
Chechang Nie ◽  
Tianming Yang

During value-based decision making, we often evaluate the value of each option sequentially by shifting our attention, even when the options are presented simultaneously. The orbitofrontal cortex (OFC) has been suggested to encode value during value-based decision making. Yet it is not known how its activity is modulated by attention shifts. We investigated this question by employing a passive viewing task that allowed us to disentangle effects of attention, value, choice and eye movement. We found that the attention modulated OFC activity through a winner-take-all mechanism. When we attracted the monkeys’ attention covertly, the OFC neuronal activity reflected the reward value of the newly attended cue. The shift of attention could be explained by a normalization model. Our results strongly argue for the hypothesis that the OFC neuronal activity represents the value of the attended item. They provide important insights toward understanding the OFC’s role in value-based decision making.


2017 ◽  
Author(s):  
Yang Xie ◽  
Chechang Nie ◽  
Tianming Yang

AbstractDuring value-based decision making, we often evaluate the value of each option sequentially by shifting our attention, even when the options are presented simultaneously. The orbitofrontal cortex (OFC) has been suggested to encode value during value-based decision making. Yet it is not known how its activity is modulated by attention shifts. We investigated this question by employing a passive viewing task that allowed us to disentangle effects of attention, value, choice and eye movement. We found that the attention modulated OFC activity through a winner-take-all mechanism. When we attracted the monkeys’ attention covertly, the OFC neuronal activity reflected the reward value of the newly attended cue. The shift of attention could be explained by a normalization model. Our results strongly argue for the hypothesis that the OFC neuronal activity represents the value of covertly attended item. They provide important insights toward the neural mechanism of value-based decision making.


Author(s):  
Sébastien Ballesta ◽  
Weikang Shi ◽  
Katherine E. Conen ◽  
Camillo Padoa-Schioppa

AbstractIt has long been hypothesized that economic choices rely on the assignment and comparison of subjective values. Indeed, when agents make decisions, neurons in orbitofrontal cortex encode the values of offered and chosen goods. Moreover, neuronal activity in this area suggests the formation of a decision. However, it is unclear whether these neural processes are causally related to choices. More generally, the evidence linking economic choices to value signals in the brain remains correlational. We address this fundamental issue using electrical stimulation in rhesus monkeys. We show that suitable currents bias choices by increasing the value of individual offers. Furthermore, high-current stimulation disrupts both the computation and the comparison of subjective values. These results demonstrate that values encoded in orbitofrontal cortex are causal to economic choices.


2020 ◽  
Vol 393 ◽  
pp. 112792
Author(s):  
Sanja Klein ◽  
Onno Kruse ◽  
Charlotte Markert ◽  
Isabell Tapia León ◽  
Jana Strahler ◽  
...  

2007 ◽  
Vol 66 (1) ◽  
pp. 96-112 ◽  
Author(s):  
Edmund T. Rolls

Complementary neurophysiological recordings in rhesus macaques (Macaca mulatta) and functional neuroimaging in human subjects show that the primary taste cortex in the rostral insula and adjoining frontal operculum provides separate and combined representations of the taste, temperature and texture (including viscosity and fat texture) of food in the mouth independently of hunger and thus of reward value and pleasantness. One synapse on, in the orbitofrontal cortex, these sensory inputs are for some neurons combined by learning with olfactory and visual inputs. Different neurons respond to different combinations, providing a rich representation of the sensory properties of food. In the orbitofrontal cortex feeding to satiety with one food decreases the responses of these neurons to that food, but not to other foods, showing that sensory-specific satiety is computed in the primate (including the human) orbitofrontal cortex. Consistently, activation of parts of the human orbitofrontal cortex correlates with subjective ratings of the pleasantness of the taste and smell of food. Cognitive factors, such as a word label presented with an odour, influence the pleasantness of the odour, and the activation produced by the odour in the orbitofrontal cortex. Food intake is thus controlled by building a multimodal representation of the sensory properties of food in the orbitofrontal cortex and gating this representation by satiety signals to produce a representation of the pleasantness or reward value of food that drives food intake. Factors that lead this system to become unbalanced and contribute to overeating and obesity are described.


2020 ◽  
Author(s):  
Pragathi Priyadharsini Balasubramani ◽  
Benjamin Y. Hayden

ABSTRACTEconomic choice and inhibition are two important elements of our cognitive repertoires that may be closely related. We and others have noted that during economic choice, options are typically considered serially; this fact provides important constraints on our understanding of choice. Notably, asynchronous contemplation means that each individual option is subject to an accept-reject decision. We have proposed that these component accept-reject decisions may have some kinship with stopping decisions. One prediction of this idea is that stopping and choice may reflect similar neural processes occurring in overlapping brain circuits. To test the idea, we recorded neuronal activity in orbitofrontal cortex (OFC) Area 13 while macaques performed a stop signal task interleaved with a structurally matched choice task. Using neural network decoders, we find that OFC ensembles have overlapping codes for stopping and choice: the decoder that was only trained to identify accept vs. reject trials performed with higher efficiency even when tested on the stop trials. These results provide tentative support for the idea that mechanisms underlying inhibitory control and choice selection may be subject to theoretical unification.


2021 ◽  
Vol 118 (30) ◽  
pp. e2022650118
Author(s):  
Alexandre Pastor-Bernier ◽  
Arkadiusz Stasiak ◽  
Wolfram Schultz

Sensitivity to satiety constitutes a basic requirement for neuronal coding of subjective reward value. Satiety from natural ongoing consumption affects reward functions in learning and approach behavior. More specifically, satiety reduces the subjective economic value of individual rewards during choice between options that typically contain multiple reward components. The unconfounded assessment of economic reward value requires tests at choice indifference between two options, which is difficult to achieve with sated rewards. By conceptualizing choices between options with multiple reward components (“bundles”), Revealed Preference Theory may offer a solution. Despite satiety, choices against an unaltered reference bundle may remain indifferent when the reduced value of a sated bundle reward is compensated by larger amounts of an unsated reward of the same bundle, and then the value loss of the sated reward is indicated by the amount of the added unsated reward. Here, we show psychophysically titrated choice indifference in monkeys between bundles of differently sated rewards. Neuronal chosen value signals in the orbitofrontal cortex (OFC) followed closely the subjective value change within recording periods of individual neurons. A neuronal classifier distinguishing the bundles and predicting choice substantiated the subjective value change. The choice between conventional single rewards confirmed the neuronal changes seen with two-reward bundles. Thus, reward-specific satiety reduces subjective reward value signals in OFC. With satiety being an important factor of subjective reward value, these results extend the notion of subjective economic reward value coding in OFC neurons.


Sign in / Sign up

Export Citation Format

Share Document