scholarly journals Motor training strengthens corticospinal suppression during movement preparation

2020 ◽  
Vol 124 (6) ◽  
pp. 1656-1666
Author(s):  
Pierre Vassiliadis ◽  
Gerard Derosiere ◽  
Julien Grandjean ◽  
Julie Duque

Movement preparation involves a broad suppression in the excitability of the corticospinal pathway, a phenomenon called preparatory suppression. Here, we show that motor training strengthens preparatory suppression and that this strengthening is associated with faster reaction times. Our findings highlight a key role of preparatory suppression in training-driven behavioral improvements.

2002 ◽  
Vol 16 (3) ◽  
pp. 185-200 ◽  
Author(s):  
Cynthia Laurie Rose ◽  
Laura Bennett Murphy ◽  
Lynn Byard ◽  
Katherina Nikzad

Using the five‐factor personality model, the present study explored the influence of personality factors on sustained attention and perceived workload. Ninety‐six college‐aged participants were administered a 12 minute vigilance fast event rate task. Following the vigil, participants were asked to first, rate their perceived workload of the task using the NASA‐TLX, and then second, complete the NEO‐PI‐R personality inventory. Traditional measures of hits, false alarms, and reaction times were examined as well as the signal detection indices of perceptual sensitivity and response bias. Extraversion correlated with false alarms (r = 0.181; eta2 = 0.055) and conscientiousness correlated with both false alarms (r = −0.275, eta2 = 0.097) and perceptual sensitivity (r = 0.227, eta2 = 0.052). With regard to perceived workload, neuroticism was related to perceived frustration (r = 0.238, eta2 = 0.057). The findings are discussed in terms of theoretical implications, impact of task parameters, and practical applications. Copyright © 2002 John Wiley & Sons, Ltd.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Irina Chamine ◽  
Barry S. Oken

Objective. Stress-reducing therapies help maintain cognitive performance during stress. Aromatherapy is popular for stress reduction, but its effectiveness and mechanism are unclear. This study examined stress-reducing effects of aromatherapy on cognitive function using the go/no-go (GNG) task performance and event related potentials (ERP) components sensitive to stress. The study also assessed the importance of expectancy in aromatherapy actions.Methods. 81 adults were randomized to 3 aroma groups (active experimental, detectable, and undetectable placebo) and 2 prime subgroups (prime suggesting stress-reducing aroma effects or no-prime). GNG performance, ERPs, subjective expected aroma effects, and stress ratings were assessed at baseline and poststress.Results. No specific aroma effects on stress or cognition were observed. However, regardless of experienced aroma, people receiving a prime displayed faster poststress median reaction times than those receiving no prime. A significant interaction for N200 amplitude indicated divergent ERP patterns between baseline and poststress for go and no-go stimuli depending on the prime subgroup. Furthermore, trends for beneficial prime effects were shown on poststress no-go N200/P300 latencies and N200 amplitude.Conclusion. While there were no aroma-specific effects on stress or cognition, these results highlight the role of expectancy for poststress response inhibition and attention.


2005 ◽  
Vol 93 (1) ◽  
pp. 519-534 ◽  
Author(s):  
Masayuki Watanabe ◽  
Yasushi Kobayashi ◽  
Yuka Inoue ◽  
Tadashi Isa

To examine the role of competitive and cooperative neural interactions within the intermediate layer of superior colliculus (SC), we elevated the basal SC neuronal activity by locally injecting a cholinergic agonist nicotine and analyzed its effects on saccade performance. After microinjection, spontaneous saccades were directed toward the movement field of neurons at the injection site (affected area). For visually guided saccades, reaction times were decreased when targets were presented close to the affected area. However, when visual targets were presented remote from the affected area, reaction times were not increased regardless of the rostrocaudal level of the injection sites. The endpoints of visually guided saccades were biased toward the affected area when targets were presented close to the affected area. After this endpoint effect diminished, the trajectories of visually guided saccades remained modestly curved toward the affected area. Compared with the effects on endpoints, the effects on reaction times were more localized to the targets close to the affected area. These results are consistent with a model that saccades are triggered by the activities of neurons within a restricted region, and the endpoints and trajectories of the saccades are determined by the widespread population activity in the SC. However, because increased reaction times were not observed for saccades toward targets remote from the affected area, inhibitory interactions in the SC may not be strong enough to shape the spatial distribution of the low-frequency preparatory activities in the SC.


2004 ◽  
Vol 18 (2/3) ◽  
pp. 130-139 ◽  
Author(s):  
Guillermo Paradiso ◽  
Danny Cunic ◽  
Robert Chen

Abstract Although it has long been suggested that the basal ganglia and thalamus are involved in movement planning and preparation, there was little direct evidence in humans to support this hypothesis. Deep brain stimulation (DBS) is a well-established treatment for movement disorders such as Parkinson's disease, tremor, and dystonia. In patients undergoing DBS surgery, we recorded simultaneously from scalp contacts and from electrodes surgically implanted in the subthalamic nucleus (STN) of 13 patients with Parkinson's disease and in the “cerebellar” thalamus of 5 patients with tremor. The aim of our studies was to assess the role of the cortico-basal ganglia-thalamocortical loop through the STN and the cerebello-thalamocortical circuit through the “cerebellar” thalamus in movement preparation. The patients were asked to perform self-paced wrist extension movements. All subjects showed a cortical readiness potential (RP) with onset ranging between 1.5 to 2s before the onset of movement. Subcortical RPs were recorded in 11 of 13 with electrodes in the STN and in 4 of 5 patients with electrodes in the thalamus. The onset time of the STN and thalamic RPs were not significantly different from the onset time of the scalp RP. The STN and thalamic RPs were present before both contralateral and ipsilateral hand movements. Postoperative MRI studies showed that contacts with maximum RP amplitude generally were inside the target nucleus. These findings indicate that both the basal ganglia and the cerebellar circuits participate in movement preparation in parallel with the cortex.


Sports ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 120 ◽  
Author(s):  
Attila Kovacs ◽  
Garrett Miles ◽  
Harsimran Baweja

While focusing attention on external cues (EF) has been shown to enhance performance track and field coaches tend to provide instructions that promote internal focus of attention (IF) during block starts. The aims of this study were to determine: (1) whether promoting EF versus IF would improve reaction time (RT) of sprinters, and (2) if changes occur at the level of central processes during movement preparation (premotor RT) or peripheral processes during movement execution (motor RT). Twelve collegiate track sprinters (age 20.8 ± 1.7) completed three testing sessions under EF, IF, and no focus instruction (NF) conditions. RT was recorded from the left and right blocks. Muscle activation time (EMG) was recorded from the vastus lateralis and gastrocnemius muscles. Mean rear foot RT was significantly shorter (p < 0.0001) under the EF (212.11 ms) compared with the IF (234.21 ms) and NF conditions (236.87 ms). Front foot RT was significantly shorter (p < 0.05) during EF (250.24 ms), compared to IF (266.98 ms) but not shorter than the NF (268.73 ms) condition. Mean premotor RT under the EF condition (157.75 ms) was significantly shorter (p < 0.001) compared with the IF (181.90 ms) and NF (173.60 ms) conditions. No differences were found in motor RT across conditions (p > 0.05). Adopting an EF improves RT during sprint starts. This improvement likely originates from a shortening in movement preparation time, as opposed to a faster excitation contraction coupling of the muscle fibers. These findings could potentially contribute to the development of new coaching methods aimed at improving the starting technique of athletes.


2019 ◽  
Vol 62 (4) ◽  
pp. 835-852 ◽  
Author(s):  
Mikhail Ordin ◽  
Leona Polyanskaya ◽  
David Maximiliano Gómez ◽  
Arthur G. Samuel

Purpose We investigated whether rhythm discrimination is mainly driven by the native language of the listener or by the fundamental design of the human auditory system and universal cognitive mechanisms shared by all people irrespective of rhythmic patterns in their native language. Method In multiple experiments, we asked participants to listen to 2 continuous acoustic sequences and to determine whether their rhythms were the same or different (AX discrimination). Participants were native speakers of 4 languages with different rhythmic properties (Spanish, French, English, and German) to understand whether the predominant rhythmic patterns of a native language affect sensitivity, bias, and reaction time in detecting rhythmic changes in linguistic (Experiment 2) and in nonlinguistic (Experiments 1 and 2) acoustic sequences. We examined sensitivity and bias measures, as well as reaction times. We also computed Bayes factors in order to assess the effect of native language. Results All listeners performed better (i.e., responded faster and manifested higher sensitivity and accuracy) when detecting the presence or absence of a rhythm change when the 1st stimulus in an AX test pair exhibited regular rhythm (i.e., a syllable-timed rhythmic pattern) than when the 1st stimulus exhibited irregular rhythm (i.e., stress-timed rhythmic pattern). This result pattern was observed both on linguistic and nonlinguistic stimuli and was not modulated by the native language of the participant. Conclusion We conclude that rhythm change detection is a fundamental function of a processing system that relies on general auditory mechanisms and is not modulated by linguistic experience.


2005 ◽  
Vol 93 (2) ◽  
pp. 1099-1103 ◽  
Author(s):  
Alain Kaelin-Lang ◽  
Lumy Sawaki ◽  
Leonardo G. Cohen

Motor training consisting of repetitive thumb movements results in encoding of motor memories in the primary motor cortex. It is not known if proprioceptive input originating in the training movements is sufficient to produce this effect. In this study, we compared the ability of training consisting of voluntary (active) and passively-elicited (passive) movements to induce this form of plasticity. Active training led to successful encoding accompanied by characteristic changes in corticomotor excitability, while passive training did not. These results support a pivotal role for voluntary motor drive in coding motor memories in the primary motor cortex.


2010 ◽  
Vol 32 (2) ◽  
pp. 137-153 ◽  
Author(s):  
Matthias Bluemke ◽  
Ralf Brand ◽  
Geoffrey Schweizer ◽  
Daniela Kahlert

Models employed in exercise psychology highlight the role of reflective processes for explaining behavior change. However, as discussed in social cognition literature, information-processing models also consider automatic processes (dual-process models). To examine the relevance of automatic processing in exercise psychology, we used a priming task to assess the automatic evaluations of exercise stimuli in physically active sport and exercise majors (n = 32), physically active nonsport majors (n = 31), and inactive students (n = 31). Results showed that physically active students responded faster to positive words after exercise primes, whereas inactive students responded more rapidly to negative words. Priming task reaction times were successfully used to predict reported amounts of exercise in an ordinal regression model. Findings were obtained only with experiential items reflecting negative and positive consequences of exercise. The results illustrate the potential importance of dual-process models in exercise psychology.


2008 ◽  
Vol 25 (1) ◽  
pp. 3-15 ◽  
Author(s):  
YING ZHANG ◽  
PETER H. SCHILLER

This study examined the effectiveness with which motion parallax information can be utilized by rhesus monkeys for depth perception. A visual display comprised of random-dots that mimicked a rigid, three-dimensional object rocking back and forth was used. Differential depth was produced by presenting sub-regions of the dots moving at different velocities from the rest of dots in the display. The tasks for the monkeys were to detect or discriminate a target region that was protruding the furthest from the background plane. To understand the role of stimulus movement, we examined the accuracy and the rapidity of the saccadic responses as a function of rocking velocity of the entire three-dimensional object. The results showed that performance accuracy improved and reaction times decreased with increasing rocking velocities. The monkeys can process the motion parallax information with remarkable rapidity such that the average reaction time ranged between 212 and 246 milliseconds. The data collected suggest that the successive activation of just two sets of cones is sufficient to perform the task.


Sign in / Sign up

Export Citation Format

Share Document