scholarly journals Visual epidural field potentials possess high functional specificity in single trials

2019 ◽  
Vol 122 (4) ◽  
pp. 1634-1648 ◽  
Author(s):  
Benjamin Fischer ◽  
Andreas Schander ◽  
Andreas K. Kreiter ◽  
Walter Lang ◽  
Detlef Wegener

Recordings of epidural field potentials (EFPs) allow neuronal activity to be acquired over a large region of cortical tissue with minimal invasiveness. Because electrodes are placed on top of the dura and do not enter the neuronal tissue, EFPs offer intriguing options for both clinical and basic science research. On the other hand, EFPs represent the integrated activity of larger neuronal populations and possess a higher trial-by-trial variability and a reduced signal-to-noise ratio due the additional barrier of the dura. It is thus unclear whether and to what extent EFPs have sufficient spatial selectivity to allow for conclusions about the underlying functional cortical architecture, and whether single EFP trials provide enough information on the short timescales relevant for many clinical and basic neuroscience purposes. We used the high spatial resolution of primary visual cortex to address these issues and investigated the extent to which very short EFP traces allow reliable decoding of spatial information. We briefly presented different visual objects at one of nine closely adjacent locations and recorded neuronal activity with a high-density epidural multielectrode array in three macaque monkeys. With the use of receiver operating characteristics (ROC) to identify the most informative data, machine-learning algorithms provided close-to-perfect classification rates for all 27 stimulus conditions. A binary classifier applying a simple max function on ROC-selected data further showed that single trials might be classified with 100% performance even without advanced offline classifiers. Thus, although highly variable, EFPs constitute an extremely valuable source of information and offer new perspectives for minimally invasive recording of large-scale networks. NEW & NOTEWORTHY Epidural field potential (EFP) recordings provide a minimally invasive approach to investigate large-scale neural networks, but little is known about whether they possess the required specificity for basic and clinical neuroscience. By making use of the spatial selectivity of primary visual cortex, we show that single-trial information can be decoded with close-to-perfect performance, even without using advanced classifiers and based on very few data. This labels EFPs as a highly attractive and widely usable signal.

2019 ◽  
Author(s):  
Benjamin Fischer ◽  
Andreas Schander ◽  
Andreas K. Kreiter ◽  
Walter Lang ◽  
Detlef Wegener

AbstractRecordings of epidural field potentials (EFPs) allow to acquire neuronal activity over a large region of cortical tissue with minimal invasiveness. Because electrodes are placed on top of the dura and do not enter the neuronal tissue, EFPs offer intriguing options for both clinical and basic science research. On the other hand, EFPs represent the integrated activity of larger neuronal populations, possess a higher trial-by-trial variability, and a reduced signal-to-noise ratio due the additional barrier of the dura. It is thus unclear whether and to what extent EFPs have sufficient spatial selectivity to allow for conclusions about the underlying functional cortical architecture, and whether single EFP trials provide enough information on the short time scales relevant for many clinical and basic neuroscience purposes. We here use the high spatial resolution of primary visual cortex to address these issues and investigate the extent to which very short EFP traces allow reliable decoding of spatial information. We briefly presented different visual objects at one out of nine closely adjacent locations and recorded neuronal activity with a high-density, epidural multi-electrode array in three macaque monkeys. Using receiver-operating characteristics to identify most-informative data, machine-learning algorithms provided close-to-perfect classification rates for all 27 stimulus conditions. A binary classifier applying a simple max function on ROC-selected data further showed that single trials might be classified with 100% performance even without advanced offline classifiers. Thus, although highly variable, EFPs constitute an extremely valuable source of information and offer new perspectives for minimally invasive recording of large-scale networks.


2017 ◽  
Vol 372 (1715) ◽  
pp. 20160504 ◽  
Author(s):  
Megumi Kaneko ◽  
Michael P. Stryker

Mechanisms thought of as homeostatic must exist to maintain neuronal activity in the brain within the dynamic range in which neurons can signal. Several distinct mechanisms have been demonstrated experimentally. Three mechanisms that act to restore levels of activity in the primary visual cortex of mice after occlusion and restoration of vision in one eye, which give rise to the phenomenon of ocular dominance plasticity, are discussed. The existence of different mechanisms raises the issue of how these mechanisms operate together to converge on the same set points of activity. This article is part of the themed issue ‘Integrating Hebbian and homeostatic plasticity’.


10.1038/80676 ◽  
2000 ◽  
Vol 3 (11) ◽  
pp. 1153-1159 ◽  
Author(s):  
Alex Polonsky ◽  
Randolph Blake ◽  
Jochen Braun ◽  
David J. Heeger

Author(s):  
Binghuang Cai ◽  
Yazan N. Billeh ◽  
Selmaan N. Chettih ◽  
Christopher D. Harvey ◽  
Christof Koch ◽  
...  

AbstractInvestigating how visual inputs are encoded in visual cortex is important for elucidating the roles of cell populations in circuit computations. We here use a recently developed, large-scale model of mouse primary visual cortex (V1) and perturb both single neurons as well as functional- and cell-type defined population of neurons to mimic equivalent optogenetic perturbations. First, perturbations were performed to study the functional roles of layer 2/3 excitatory neurons in inter-laminar interactions. We observed activity changes consistent with the canonical cortical model (Douglas and Martin 1991). Second, single neuron perturbations in layer 2/3 revealed a center-surround inhibition-dominated effect, consistent with recent experiments. Finally, perturbations of multiple excitatory layer 2/3 neurons during visual stimuli of varying contrasts indicated that the V1 model has both efficient and robust coding features. The circuit transitions from predominantly broad like-to-like inhibition at high contrasts to predominantly specific like-to-like excitation at low contrasts. These in silico results demonstrate how the circuit can shift from redundancy reduction to robust codes as a function of stimulus contrast.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Ulf H. Schnabel ◽  
Christophe Bossens ◽  
Jeannette A. M. Lorteije ◽  
Matthew W. Self ◽  
Hans Op de Beeck ◽  
...  

2018 ◽  
Vol 120 (4) ◽  
pp. 1625-1639 ◽  
Author(s):  
Vanessa L. Mock ◽  
Kimberly L. Luke ◽  
Jacqueline R. Hembrook-Short ◽  
Farran Briggs

Correlations and inferred causal interactions among local field potentials (LFPs) simultaneously recorded in distinct visual brain areas can provide insight into how visual and cognitive signals are communicated between neuronal populations. Based on the known anatomical connectivity of hierarchically organized visual cortical areas and electrophysiological measurements of LFP interactions, a framework for interareal frequency-specific communication has emerged. Our goals were to test the predictions of this framework in the context of the early visual pathways and to understand how attention modulates communication between the visual thalamus and primary visual cortex. We recorded LFPs simultaneously in retinotopically aligned regions of the visual thalamus and primary visual cortex in alert and behaving macaque monkeys trained on a contrast-change detection task requiring covert shifts in visual spatial attention. Coherence and Granger-causal interactions among early visual circuits varied dynamically over different trial periods. Attention significantly enhanced alpha-, beta-, and gamma-frequency interactions, often in a manner consistent with the known anatomy of early visual circuits. However, attentional modulation of communication among early visual circuits was not consistent with a simple static framework in which distinct frequency bands convey directed inputs. Instead, neuronal network interactions in early visual circuits were flexible and dynamic, perhaps reflecting task-related shifts in attention. NEW & NOTEWORTHY Attention alters the way we perceive the visual world. For example, attention can modulate how visual information is communicated between the thalamus and cortex. We recorded local field potentials simultaneously in the visual thalamus and cortex to quantify the impact of attention on visual information communication. We found that attentional modulation of visual information communication was not static, but dynamic over the time course of trials.


2002 ◽  
Vol 43 (3) ◽  
pp. 207-220 ◽  
Author(s):  
Takafumi Akasaki ◽  
Hiromichi Sato ◽  
Yumiko Yoshimura ◽  
Hirofumi Ozeki ◽  
Satoshi Shimegi

2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Timo van Kerkoerle ◽  
Matthew W. Self ◽  
Pieter R. Roelfsema

Abstract Neuronal activity in early visual cortex depends on attention shifts but the contribution to working memory has remained unclear. Here, we examine neuronal activity in the different layers of the primary visual cortex (V1) in an attention-demanding and a working memory task. A current-source density analysis reveales top-down inputs in the superficial layers and layer 5, and an increase in neuronal firing rates most pronounced in the superficial and deep layers and weaker in input layer 4. This increased activity is strongest in the attention task but it is also highly reliable during working memory delays. A visual mask erases the V1 memory activity, but it reappeares at a later point in time. These results provide new insights in the laminar circuits involved in the top-down modulation of activity in early visual cortex in the presence and absence of visual stimuli.


Sign in / Sign up

Export Citation Format

Share Document