scholarly journals Spatial tuning to sound-source azimuth in the inferior colliculus of unanesthetized rabbit

2011 ◽  
Vol 106 (5) ◽  
pp. 2698-2708 ◽  
Author(s):  
Shigeyuki Kuwada ◽  
Brian Bishop ◽  
Caitlin Alex ◽  
Daniel W. Condit ◽  
Duck O. Kim

Despite decades of research devoted to the study of inferior colliculus (IC) neurons' tuning to sound-source azimuth, there remain many unanswered questions because no previous study has examined azimuth tuning over a full range of 360° azimuths at a wide range of stimulus levels in an unanesthetized preparation. Furthermore, a comparison of azimuth tuning to binaural and contralateral ear stimulation over ranges of full azimuths and widely varying stimulus levels has not previously been reported. To fill this void, we have conducted a study of azimuth tuning in the IC of the unanesthetized rabbit over a 300° range of azimuths at stimulus levels of 10–50 dB above neural threshold to both binaural and contralateral ear stimulation using virtual auditory space stimuli. This study provides systematic evidence for neural coding of azimuth. We found the following: 1) level-tolerant azimuth tuning was observed in the top 35% regarding vector strength and in the top 15% regarding vector angle of IC neurons; 2) preserved azimuth tuning to binaural stimulation at high stimulus levels was created as a consequence of binaural facilitation in the contralateral sound field and binaural suppression in the ipsilateral sound field; 3) the direction of azimuth tuning to binaural stimulation was primarily in the contralateral sound field, and its center shifted laterally toward −90° with increasing stimulus level; 4) at 10 dB, azimuth tuning to binaural and contralateral stimulation was similar, indicating that it was mediated by monaural mechanisms; and 5) at higher stimulus levels, azimuth tuning to contralateral ear stimulation was severely degraded. These findings form a foundation for understanding neural mechanisms of localizing sound-source azimuth.

1993 ◽  
Vol 70 (1) ◽  
pp. 64-80 ◽  
Author(s):  
R. Batra ◽  
S. Kuwada ◽  
T. R. Stanford

1. Localization of sounds has traditionally been considered to be performed by a duplex mechanism utilizing interaural temporal differences (ITDs) at low frequencies and interaural intensity differences at higher frequencies. More recently, it has been found that listeners can detect ITDs at high frequencies if the amplitude of the sound varies and an ITD is present in the envelope. Here we report the responses of neurons in the inferior colliculi of unanesthetized rabbits to ITDs of the envelopes of sinusoidally amplitude-modulated (SAM) tones. 2. Neurons were studied extracellularly with glass-coated Pt-Ir or Pt-W microelectrodes. Their sensitivity to ITDs in the envelopes of high-frequency sounds (> or = 2 kHz) was assessed using SAM tones that were presented binaurally. The tones at the two ears had the same carrier frequency but modulation frequencies that differed by 1 Hz. This caused a cyclic variation in the ITD produced by the envelope. In this "binaural SAM" stimulus, the carriers caused no ITD because they were in phase. In addition to the binaural SAM stimulus, pure tones were used to investigate responses to ipsilateral and contralateral stimulation and the nature of the interaction during binaural stimulation. 3. Neurons tended to display one of two kinds of sensitivity to ITDs. Some neurons discharged maximally at the same ITD at all modulation frequencies > 250 Hz (peak-type neurons), whereas others were maximally suppressed at the same ITD (trough-type neurons). 4. At these higher modulation frequencies (> 250 Hz), the characteristic delays that neurons exhibited tended to lie within the range that a rabbit might normally encounter (+/- 300 microseconds). The peak-type neurons favored ipsilateral delays, which correspond to sounds in the contralateral sound field. The trough-type neurons showed no such preference. 5. The preference of peak-type neurons for a particular delay was sharper than that of trough-type neurons and was comparable to that observed in neurons of the inferior colliculus that are sensitive to delays of low-frequency pure tones. 6. At lower modulation frequencies (< 150 Hz) characteristic delays often lay beyond +/- 300 microseconds. 7. Increasing the ipsilateral intensity tended to shift the preferred delay ipsilaterally at lower (< 250 Hz), but not at higher, modulation frequencies. 8. When tested with pure tones, a substantial number of peak-type neurons were found to be excited by contralateral stimulation but inhibited by ipsilateral stimulation.(ABSTRACT TRUNCATED AT 400 WORDS)


2012 ◽  
Vol 107 (2) ◽  
pp. 658-665 ◽  
Author(s):  
Michaela Meyer ◽  
Arthur N. Popper ◽  
Richard R. Fay

The lake sturgeon, Acipenser fulvescens, belongs to one of the few extant nonteleost ray-finned fishes and diverged from the main vertebrate lineage about 250 million years ago. The aim of this study was to use this species to explore the peripheral neural coding strategies for sound direction and compare these results to modern bony fishes (teleosts). Extracellular recordings were made from afferent neurons innervating the saccule and lagena of the inner ear while the fish was stimulated using a shaker system. Afferents were highly directional and strongly phase locked to the stimulus. Directional response profiles resembled cosine functions, and directional preferences occurred at a wide range of stimulus intensities (spanning at least 60 dB re 1 nm displacement). Seventy-six percent of afferents were directionally selective for stimuli in the vertical plane near 90° (up down) and did not respond to horizontal stimulation. Sixty-two percent of afferents responsive to horizontal stimulation had their best axis in azimuths near 0° (front back). These findings suggest that in the lake sturgeon, in contrast to teleosts, the saccule and lagena may convey more limited information about the direction of a sound source, raising the possibility that this species uses a different mechanism for localizing sound. For azimuth, a mechanism could involve the utricle or perhaps the computation of arrival time differences. For elevation, behavioral strategies such as directing the head to maximize input to the area of best sensitivity may be used. Alternatively, the lake sturgeon may have a more limited ability for sound source localization compared with teleosts.


2014 ◽  
Vol 112 (6) ◽  
pp. 1340-1355 ◽  
Author(s):  
Shigeyuki Kuwada ◽  
Brian Bishop ◽  
Duck O. Kim

Recognition and localization of a sound are the major functions of the auditory system. In real situations, the listener and different degrees of reverberation transform the signal between the source and the ears. The present study was designed to provide these transformations and examine their influence on neural responses. Using the virtual auditory space (VAS) method to create anechoic and moderately and highly reverberant environments, we found the following: 1) In reverberation, azimuth tuning was somewhat degraded with distance whereas the direction of azimuth tuning remained unchanged. These features remained unchanged in the anechoic condition. 2) In reverberation, azimuth tuning and envelope synchrony were degraded most for neurons with low best frequencies and least for neurons with high best frequencies. 3) More neurons showed envelope synchrony to binaural than to monaural stimulation in both anechoic and reverberant environments. 4) The percentage of envelope-coding neurons and their synchrony decreased in reverberation with distance, whereas it remained constant in the anechoic condition. 5) At far distances, for both binaural and monaural stimulation, the neural gain in reverberation could be as high as 30 dB and as much as 10 dB higher than those in the anechoic condition. 6) The majority of neurons were able to code both envelope and azimuth in all of the environments. This study provides a foundation for understanding the neural coding of azimuth and envelope synchrony at different distances in reverberant and anechoic environments. This is necessary to understand how the auditory system processes “where” and “what” information in real environments.


1985 ◽  
Vol 53 (1) ◽  
pp. 43-59 ◽  
Author(s):  
L. M. Aitkin ◽  
J. D. Pettigrew ◽  
M. B. Calford ◽  
S. C. Phillips ◽  
L. Z. Wise

The responses to changes in stimulus azimuth of 204 neurons in the inferior colliculus of the cat with best frequencies of less than 3 kHz were studied. Three main unit classes were identified: omnidirectional units uninfluenced by speaker azimuth (39%); multipeaked units with several azimuthal regions at which peak firing occurred (9%); and azimuth-selective units that showed clear preferences for a discrete range of sound-source azimuths (52%). Alterations in stimulus intensity produced little change in the shapes of profiles relating firing rate to stimulus azimuth (azimuth functions), but the peaks of these functions could shift by up to 20 degrees. Similar observations were made for a small sample of units, each of which was examined with a variety of stimulus frequencies. The pinnae were removed bilaterally in 11 cats, and azimuth functions for 35 units were measured both binaurally and with the ipsilateral or contralateral ear occluded. Evidence was found for facilitative or suppressive interactions, as a function of stimulus azimuth, between monaural inputs. The sharpness of an azimuth function was expressed by the half-width of the function, i.e., the number of degrees of azimuth between the peak of the function and the point at which 50% of maximum firing occurred on the medial side of the peak. When half-widths were plotted as a function of best frequency, it was found that the sharpest azimuth functions occurred for units with best frequencies between 1.1 and 1.5 kHz. Most units in the lowest two octaves (0.1-0.4 kHz) or having best frequencies between 2 and 3 kHz were omnidirectional. The relationship between half-width and the azimuth at which peak firing occurred (best azimuth) revealed that a range of best azimuths between 10 and 40 degrees contralateral contained the sharpest azimuth functions. When best frequency was plotted against best azimuth, it was observed that the majority of units (93%) had best azimuths in the contralateral hemifield. For frequencies between 0.7 and 1.7 kHz, best azimuths occurred relatively evenly between 10 and 60 degrees contralateral. These data suggested that for frequencies between 1.2 and 1.4 kHz, at least, the best azimuths of different units with the same best frequency collectively provide information about stimulus location across much of the contralateral hemifield.(ABSTRACT TRUNCATED AT 400 WORDS)


Discharges of single units of the inferior colliculus in response to acoustic stimulation have been studied in anaesthetized and decerebrate cats by means of extracellularly placed electrodes. A tonal stimulus may cause a unit to discharge either with a short burst of spikes or with a slowly adapting train of spikes. For each unit there is a ‘characteristic frequency’ at which the threshold is lowest, with rising thresholds for frequencies on either side. In response to tonal stimuli presented to one ear, some units (classed as Group A units) may respond over a relatively wide range of the audible spectrum, while other units (classed as Group B units) are only activated by tonal frequencies within a narrow band of the spectrum. Some Group B units, however, may be activated by two separate bands of frequencies at different parts of the spectrum; this occurs even though the unit can only be activated by stimuli delivered to one ear. An increase in the intensity of the stimulus causes an increase in the rate of firing of the unit, and also a broadening in the range of tonal frequencies which can activate the unit. This takes place to a greater extent for Group A units than for Group B units. Masking of the unitary responses to clicks by different tonal backgrounds was examined. A click response may be abolished by a particular tonal frequency: on either side of this frequency the characteristics of the responses (i. e. the mean latency and number of spikes per discharge) are altered. This may take place over a large or small range of the audible spectrum. Tonal stimuli delivered to either ear may activate the same unit. In such cases, the unit may have two ‘characteristic frequencies’, but these lie close to one another. The range of tonal frequencies which activates the unit, however, differs for the two sides. Click stimulation alone presented to either ear may activate the same unit. When click stimuli are delivered in succession to the two ears, there is revealed an absolutely unresponsive period during which the second stimulus cannot evoke a detectable response. The duration of this unresponsive period is dependent upon which ear is stimulated first, and is not the same for the two sides. For most units, the absolutely unresponsive period was longer when the contralateral ear was stimulated first. With progressive increase in the interval between the two stimuli there is a relatively unresponsive period during which the characteristics of the responses are altered, until finally a constant response to the second stimulus is obtained. If the two stimuli are separated by short intervals, summation of the two responses may take place. When the sound source is moved in a semicircular horizontal plane in front of the head, and click stimuli are delivered at every 15°, an asymmetrical distribution with respect to the latency is revealed. For those units which are activated by click stimuli delivered to either ear, a progressive and linear change in the mean latency of the response occurs as the source is moved from one ear to the opposite ear. When the sound source is placed at the midline, however, there is a deviation from the linear relationship and the mean latency is significantly decreased. This decrease does not occur for responses from units activated by stimuli presented to one ear alone. The significance of these findings is discussed, particularly in relation to central mechanisms for the localization of sound in space.


2015 ◽  
Vol 114 (1) ◽  
pp. 531-539 ◽  
Author(s):  
Heath G. Jones ◽  
Andrew D. Brown ◽  
Kanthaiah Koka ◽  
Jennifer L. Thornton ◽  
Daniel J. Tollin

The century-old duplex theory of sound localization posits that low- and high-frequency sounds are localized with two different acoustical cues, interaural time and level differences (ITDs and ILDs), respectively. While behavioral studies in humans and behavioral and neurophysiological studies in a variety of animal models have largely supported the duplex theory, behavioral sensitivity to ILD is curiously invariant across the audible spectrum. Here we demonstrate that auditory midbrain neurons in the chinchilla ( Chinchilla lanigera) also encode ILDs in a frequency-invariant manner, efficiently representing the full range of acoustical ILDs experienced as a joint function of sound source frequency, azimuth, and distance. We further show, using Fisher information, that nominal “low-frequency” and “high-frequency” ILD-sensitive neural populations can discriminate ILD with similar acuity, yielding neural ILD discrimination thresholds for near-midline sources comparable to behavioral discrimination thresholds estimated for chinchillas. These findings thus suggest a revision to the duplex theory and reinforce ecological and efficiency principles that hold that neural systems have evolved to encode the spectrum of biologically relevant sensory signals to which they are naturally exposed.


Author(s):  
John Maynard Smith ◽  
Eors Szathmary

Over the history of life there have been several major changes in the way genetic information is organized and transmitted from one generation to the next. These transitions include the origin of life itself, the first eukaryotic cells, reproduction by sexual means, the appearance of multicellular plants and animals, the emergence of cooperation and of animal societies, and the unique language ability of humans. This ambitious book provides the first unified discussion of the full range of these transitions. The authors highlight the similarities between different transitions--between the union of replicating molecules to form chromosomes and of cells to form multicellular organisms, for example--and show how understanding one transition sheds light on others. They trace a common theme throughout the history of evolution: after a major transition some entities lose the ability to replicate independently, becoming able to reproduce only as part of a larger whole. The authors investigate this pattern and why selection between entities at a lower level does not disrupt selection at more complex levels. Their explanation encompasses a compelling theory of the evolution of cooperation at all levels of complexity. Engagingly written and filled with numerous illustrations, this book can be read with enjoyment by anyone with an undergraduate training in biology. It is ideal for advanced discussion groups on evolution and includes accessible discussions of a wide range of topics, from molecular biology and linguistics to insect societies.


Oxford Studies in Medieval Philosophy annually collects the best current work in the field of medieval philosophy. The various volumes print original essays, reviews, critical discussions, and editions of texts. The aim is to contribute to an understanding of the full range of themes and problems in all aspects of the field, from late antiquity into the Renaissance, and extending over the Jewish, Islamic, and Christian traditions. Volume 6 includes work on a wide range of topics, including Davlat Dadikhuda on Avicenna, Christopher Martin on Abelard’s ontology, Jeremy Skrzypek and Gloria Frost on Aquinas’s ontology, Jean‐Luc Solère on instrumental causality, Peter John Hartman on Durand of St.‐Pourçain, and Kamil Majcherek on Chatton’s rejection of final causality. The volume also includes an extended review of Thomas Williams of a new book on Aquinas’s ethics by Colleen McCluskey.


Author(s):  
Yogi Sheoran ◽  
Bruce Bouldin ◽  
P. Murali Krishnan

Inlet swirl distortion has become a major area of concern in the gas turbine engine community. Gas turbine engines are increasingly installed with more complicated and tortuous inlet systems, like those found on embedded installations on Unmanned Aerial Vehicles (UAVs). These inlet systems can produce complex swirl patterns in addition to total pressure distortion. The effect of swirl distortion on engine or compressor performance and operability must be evaluated. The gas turbine community is developing methodologies to measure and characterize swirl distortion. There is a strong need to develop a database containing the impact of a range of swirl distortion patterns on a compressor performance and operability. A recent paper presented by the authors described a versatile swirl distortion generator system that produced a wide range of swirl distortion patterns of a prescribed strength, including bulk swirl, twin swirl and offset swirl. The design of these swirl generators greatly improved the understanding of the formation of swirl. The next step of this process is to understand the effect of swirl on compressor performance. A previously published paper by the authors used parallel compressor analysis to map out different speed lines that resulted from different types of swirl distortion. For the study described in this paper, a computational fluid dynamics (CFD) model is used to couple upstream swirl generator geometry to a single stage of an axial compressor in order to generate a family of compressor speed lines. The complex geometry of the analyzed swirl generators requires that the full 360° compressor be included in the CFD model. A full compressor can be modeled several ways in a CFD analysis, including sliding mesh and frozen rotor techniques. For a single operating condition, a study was conducted using both of these techniques to determine the best method given the large size of the CFD model and the number of data points that needed to be run to generate speed lines. This study compared the CFD results for the undistorted compressor at 100% speed to comparable test data. Results of this study indicated that the frozen rotor approach provided just as accurate results as the sliding mesh but with a greatly reduced cycle time. Once the CFD approach was calibrated, the same techniques were used to determine compressor performance and operability when a full range of swirl distortion patterns were generated by upstream swirl generators. The compressor speed line shift due to co-rotating and counter-rotating bulk swirl resulted in a predictable performance and operability shift. Of particular importance is the compressor performance and operability resulting from an exposure to a set of paired swirl distortions. The CFD generated speed lines follow similar trends to those produced by parallel compressor analysis.


2018 ◽  
Vol 64 (4) ◽  
pp. 656-679 ◽  
Author(s):  
Jeffrey D Freeman ◽  
Lori M Rosman ◽  
Jeremy D Ratcliff ◽  
Paul T Strickland ◽  
David R Graham ◽  
...  

Abstract BACKGROUND Advancements in the quality and availability of highly sensitive analytical instrumentation and methodologies have led to increased interest in the use of microsamples. Among microsamples, dried blood spots (DBS) are the most well-known. Although there have been a variety of review papers published on DBS, there has been no attempt at describing the full range of analytes measurable in DBS, or any systematic approach published for characterizing the strengths and weaknesses associated with adoption of DBS analyses. CONTENT A scoping review of reviews methodology was used for characterizing the state of the science in DBS. We identified 2018 analytes measured in DBS and found every common analytic method applied to traditional liquid samples had been applied to DBS samples. Analytes covered a broad range of biomarkers that included genes, transcripts, proteins, and metabolites. Strengths of DBS enable its application in most clinical and laboratory settings, and the removal of phlebotomy and the need for refrigeration have expanded biosampling to hard-to-reach and vulnerable populations. Weaknesses may limit adoption in the near term because DBS is a nontraditional sample often requiring conversion of measurements to plasma or serum values. Opportunities presented by novel methodologies may obviate many of the current limitations, but threats around the ethical use of residual samples must be considered by potential adopters. SUMMARY DBS provide a wide range of potential applications that extend beyond the reach of traditional samples. Current limitations are serious but not intractable. Technological advancements will likely continue to minimize constraints around DBS adoption.


Sign in / Sign up

Export Citation Format

Share Document