Electrophysiological Classes of Cat Primary Visual Cortical Neurons In Vivo as Revealed by Quantitative Analyses

2003 ◽  
Vol 89 (3) ◽  
pp. 1541-1566 ◽  
Author(s):  
Lionel G. Nowak ◽  
Rony Azouz ◽  
Maria V. Sanchez-Vives ◽  
Charles M. Gray ◽  
David A. McCormick

To facilitate the characterization of cortical neuronal function, the responses of cells in cat area 17 to intracellular injection of current pulses were quantitatively analyzed. A variety of response variables were used to separate the cells into subtypes using cluster analysis. Four main classes of neurons could be clearly distinguished: regular spiking (RS), fast spiking (FS), intrinsic bursting (IB), and chattering (CH). Each of these contained significant subclasses. RS neurons were characterized by trains of action potentials that exhibited spike frequency adaptation. Morphologically, these cells were spiny stellate cells in layer 4 and pyramidal cells in layers 2, 3, 5, and 6. FS neurons had short-duration action potentials (<0.5 ms at half height), little or no spike frequency adaptation, and a steep relationship between injected current intensity and spike discharge frequency. Morphologically, these cells were sparsely spiny or aspiny nonpyramidal cells. IB neurons typically generated a low frequency (<425 Hz) burst of spikes at the beginning of a depolarizing current pulse followed by a tonic train of action potentials for the remainder of the pulse. These cells were observed in all cortical layers, but were most abundant in layer 5. Finally, CH neurons generated repetitive, high-frequency (350–700 Hz) bursts of short-duration (<0.55 ms) action potentials. Morphologically, these cells were layer 2–4 (mainly layer 3) pyramidal or spiny stellate neurons. These results indicate that firing properties do not form a continuum and that cortical neurons are members of distinct electrophysiological classes and subclasses.

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Edward D Cui ◽  
Ben W Strowbridge

Most neurons do not simply convert inputs into firing rates. Instead, moment-to-moment firing rates reflect interactions between synaptic inputs and intrinsic currents. Few studies investigated how intrinsic currents function together to modulate output discharges and which of the currents attenuated by synthetic cholinergic ligands are actually modulated by endogenous acetylcholine (ACh). In this study we optogenetically stimulated cholinergic fibers in rat neocortex and find that ACh enhances excitability by reducing Ether-à-go-go Related Gene (ERG) K+ current. We find ERG mediates the late phase of spike-frequency adaptation in pyramidal cells and is recruited later than both SK and M currents. Attenuation of ERG during coincident depolarization and ACh release leads to reduced late phase spike-frequency adaptation and persistent firing. In neuronal ensembles, attenuating ERG enhanced signal-to-noise ratios and reduced signal correlation, suggesting that these two hallmarks of cholinergic function in vivo may result from modulation of intrinsic properties.


2009 ◽  
Vol 102 (6) ◽  
pp. 3689-3697 ◽  
Author(s):  
David Barraza ◽  
Hitoshi Kita ◽  
Charles J. Wilson

Neurons of the subthalamic nucleus (STN) are very sensitive to applied currents, firing at 10–20/s during spontaneous activity, but increasing to peak firing rates of 200/s with applied currents <0.5 nA. They receive a powerful tonic excitatory input from neurons in the cerebral cortex, yet in vivo maintain an irregular firing rate only slightly higher than the autonomous firing rate seen in slices. Spike frequency adaptation acts to normalize background firing rate by removing slow trends in firing due to changes in average input. Subthalamic neurons have been previously described as showing little spike frequency adaptation, but this was based on tests using brief stimuli. We applied long-duration depolarizing current steps to STN neurons in slices and observed a very strong spike frequency adaptation with a time constant of 20 s and that recovered at a similar rate. This adaptation could return firing to near-baseline levels during prolonged current pulses that transiently drove the cells at high rates. The current responsible for adaptation was studied in voltage clamp during and after high-frequency driving of the cell and was determined to be a slowly accumulating K+ current. This current was independent of calcium or sodium entry and could be induced with long-duration voltage steps after blockade of action potentials. In addition to the adaptation current, driven firing produced slow inactivation of the persistent Na+ current, which also contributed to the reduced excitability of STN cells during and after driven firing.


2001 ◽  
Vol 13 (6) ◽  
pp. 1285-1310 ◽  
Author(s):  
Bard Ermentrout ◽  
Matthew Pascal ◽  
Boris Gutkin

There are several different biophysical mechanisms for spike frequency adaptation observed in recordings from cortical neurons. The two most commonly used in modeling studies are a calcium-dependent potassium current Iahp and a slow voltage-dependent potassium current, Im. We show that both of these have strong effects on the synchronization properties of excitatorily coupled neurons. Furthermore, we show that the reasons for these effects are different. We show through an analysis of some standard models, that the M-current adaptation alters the mechanism for repetitive firing, while the after hyperpolarization adaptation works via shunting the incoming synapses. This latter mechanism applies with a network that has recurrent inhibition. The shunting behavior is captured in a simple two-variable reduced model that arises near certain types of bifurcations. A one-dimensional map is derived from the simplified model.


2017 ◽  
Vol 117 (3) ◽  
pp. 1363-1378 ◽  
Author(s):  
Maik C. Stüttgen ◽  
Lourens J. P. Nonkes ◽  
H. Rüdiger A. P. Geis ◽  
Paul H. Tiesinga ◽  
Arthur R. Houweling

Temporal patterns of action potentials influence a variety of activity-dependent intra- and intercellular processes and play an important role in theories of neural coding. Elucidating the mechanisms underlying these phenomena requires imposing spike trains with precisely defined patterns, but this has been challenging due to the limitations of existing stimulation techniques. Here we present a new nanostimulation method providing control over the action potential output of individual cortical neurons. Spikes are elicited through the juxtacellular application of short-duration fluctuating currents (“kurzpulses”), allowing for the sub-millisecond precise and reproducible induction of arbitrary patterns of action potentials at all physiologically relevant firing frequencies (<120 Hz), including minute-long spike trains recorded in freely moving animals. We systematically compared our method to whole cell current injection, as well as optogenetic stimulation, and show that nanostimulation performance compares favorably with these techniques. This new nanostimulation approach is easily applied, can be readily performed in awake behaving animals, and thus promises to be a powerful tool for systematic investigations into the temporal elements of neural codes, as well as the mechanisms underlying a wide variety of activity-dependent cellular processes. NEW & NOTEWORTHY Assessing the impact of temporal features of neuronal spike trains requires imposing arbitrary patterns of spiking on individual neurons during behavior, but this has been difficult to achieve due to limitations of existing stimulation methods. We present a technique that overcomes these limitations by using carefully designed short-duration fluctuating juxtacellular current injections, which allow for the precise and reliable evocation of arbitrary patterns of neuronal spikes in single neurons in vivo.


1998 ◽  
Vol 10 (4) ◽  
pp. 837-854 ◽  
Author(s):  
Sharon M. Crook ◽  
G. Bard Ermentrout ◽  
James M. Bower

Oscillations in many regions of the cortex have common temporal characteristics with dominant frequencies centered around the 40 Hz (gamma) frequency range and the 5–10 Hz (theta) frequency range. Experimental results also reveal spatially synchronous oscillations, which are stimulus dependent (Gray&Singer, 1987;Gray, König, Engel, & Singer, 1989; Engel, König, Kreiter, Schillen, & Singer, 1992). This rhythmic activity suggests that the coherence of neural populations is a crucial feature of cortical dynamics (Gray, 1994). Using both simulations and a theoretical coupled oscillator approach, we demonstrate that the spike frequency adaptation seen in many pyramidal cells plays a subtle but important role in the dynamics of cortical networks. Without adaptation, excitatory connections among model pyramidal cells are desynchronizing. However, the slow processes associated with adaptation encourage stable synchronous behavior.


2002 ◽  
Vol 88 (2) ◽  
pp. 761-770 ◽  
Author(s):  
Galit Fuhrmann ◽  
Henry Markram ◽  
Misha Tsodyks

Spike-frequency adaptation in neocortical pyramidal neurons was examined using the whole cell patch-clamp technique and a phenomenological model of neuronal activity. Noisy current was injected to reproduce the irregular firing typically observed under in vivo conditions. The response was quantified by computing the poststimulus histogram (PSTH). To simulate the spiking activity of a pyramidal neuron, we considered an integrate-and-fire model to which an adaptation current was added. A simplified model for the mean firing rate of an adapting neuron under noisy conditions is also presented. The mean firing rate model provides a good fit to both experimental and simulation PSTHs and may therefore be used to study the response characteristics of adapting neurons to various input currents. The models enable identification of the relevant parameters of adaptation that determine the shape of the PSTH and allow the computation of the response to any change in injected current. The results suggest that spike frequency adaptation determines a preferred frequency of stimulation for which the phase delay of a neuron's activity relative to an oscillatory input is zero. Simulations show that the preferred frequency of single neurons dictates the frequency of emergent population rhythms in large networks of adapting neurons. Adaptation could therefore be one of the crucial factors in setting the frequency of population rhythms in the neocortex.


1996 ◽  
Vol 75 (2) ◽  
pp. 931-939 ◽  
Author(s):  
J. G. Tasker ◽  
N. W. Hoffman ◽  
Y. I. Kim ◽  
R. S. Fisher ◽  
W. J. Peacock ◽  
...  

1. The intrinsic electrical properties of human neocortical neurons were studied with current-clamp and single-electrode voltage-clamp techniques in slices obtained from children, aged 3 mo to 15 yr, undergoing surgical treatment of intractable epilepsy. Neocortical samples were classified as most or least abnormal based on clinical data. Recorded neurons were labeled with biocytin for correlation of electrical properties with morphological characteristics and laminar position. All recorded neurons were divided into three cell types--fast-spiking, low-threshold spiking (LTS) and non-LTS cells--on the basis of their electrical characteristics. 2. Fast-spiking cells generated brief, rapidly repolarizing action potentials. Most of these cells showed only weak spike-frequency adaptation. Fast-spiking cells labeled with biocytin were aspiny or sparsely spiny nonpyramidal neurons located in cortical layers 2-4. 3. LTS cells generated Ca(2+)-dependent low-threshold potentials and were the most numerous of the three cell types. Their Na(+)-dependent action potentials were broader than those of fast-spiking cells and showed marked spike-frequency adaptation. The size of low-threshold Ca2+ potentials and currents varied across cells, but they never supported more than two or, occasionally, three fast action potentials. LTS cells were pyramidal neurons located throughout cortical layers 2-6. Unlike the bursting neocortical cells described in lower mammals, LTS neurons in neocortex from children failed to generate bursts of inactivating Na+ action potentials. 4. Non-LTS cells also had relatively broad Na(+)-dependent action potentials and showed spike-frequency adaptation, but they did not generate detectable low-threshold potentials or currents. Non-LTS cells were also pyramidal neurons located throughout layers 2-6. 5. The electrical properties of cells from different age groups (< or = 1, 2-8, and 9-15 yr) and from most-abnormal and least-abnormal tissue samples were compared. A statistically significant trend toward a lower input resistance, a faster membrane time constant, and a decreased spike duration was observed with increasing age. There were no significant differences between the electrical properties of cells from the most-abnormal tissue and cells from the least-abnormal tissue. 6. These data indicate that the intrinsic electrical properties of neocortical neurons from children vary according to cell morphology and change with increasing age, as has been observed in rodent and feline neocortical neurons. No obvious evidence of epileptogenicity was detected in the intrinsic electrical properties of any of the neurons studied.


1988 ◽  
Vol 60 (3) ◽  
pp. 869-878 ◽  
Author(s):  
R. Llinás ◽  
J. Lopez-Barneo

1. The long-term adaptation of repetitive firing in guinea pig superior colliculus neurons was studied in a mesencephalic slice preparation using intracellular recording techniques. 2. This long-term adaptation was characterized by a decrease in the number of action potentials generated by a depolarizing pulse of constant amplitude applied at frequencies of 0.5-2 Hz. Long-term adaptation appeared in all cells tested regardless of whether they showed short-term spike frequency adaptation during each pulse. 3. Long-term adaptation had a close-to-exponential time course with a time constant of 4.085 +/- 0.675 s (mean +/- SD, n = 8). This phenomenon developed more rapidly as the stimulus frequency increased and was paralleled by a progressive hyperpolarization of the membrane potential which, at the termination of the train of stimuli, remained 6-10 mV more negative than the resting value. 4. The hyperpolarization and the spike frequency adaptation recovered spontaneously in approximately 60 s. The time constant of recovery was 14.66 +/- 1.189 s (n = 4). 5. The afterhyperpolarization (AHP) was also paralleled by a decrease in the input resistance of the cells. This response and the adaptation disappeared after removal of Ca2+ or after addition of Cd2+ to the external solution. This suggests that Ca2+ entry during trains of action potentials activates a Ca2+-dependent K+ conductance with an unusually slow kinetics. 6. This conductance appears to differ from other Ca2+-dependent K+ conductances in that it was blocked by 4-aminopyridine. 7. The properties of this long-term adaptation are remarkably similar to those reported for visual habituation; thus this newly described K+ conductance may be pertinent to the understanding of this behavioral phenomenon.


2005 ◽  
Vol 93 (2) ◽  
pp. 1111-1118 ◽  
Author(s):  
V. F. Descalzo ◽  
L. G. Nowak ◽  
J. C. Brumberg ◽  
D. A. McCormick ◽  
M. V. Sanchez-Vives

Fast-spiking (FS) neurons are a class of inhibitory interneurons classically characterized as having short-duration action potentials (<0.5 ms at half height) and displaying little to no spike-frequency adaptation during short (<500 ms) depolarizing current pulses. As a consequence, the resulting injected current intensity versus firing frequency relationship is typically steep, and they can achieve firing frequencies of ≤1 kHz. Here we have investigated the properties of FS neurons discharges on a longer time scale. Twenty second discharges were induced in electrophysiologically identified FS neurons by means of current injection either with sinusoidal current or with square pulses. We found that virtually all FS neurons recorded in cortical slices do show spike-frequency adaptation but with a slow time course (τ = 2–19 s). This slow time course has precluded the observation of this property in previous studies that used shorter pulses. Contrary to the classical view of FS neurons functional properties, long-duration discharges were followed by a slow afterhyperpolarization lasting ≤23 s. During this postadaptation period, the excitability of the neurons was decreased on average for 16.7 ± 6.8 s, therefore rendering the cell less responsive to subsequent afferent inputs. Slow adaptation is also reported here for FS neurons recorded in vivo. This longer time scale of adaptation in FS neurons may be critical for balancing excitation and inhibition as well as for the understanding of cortical network computations.


Sign in / Sign up

Export Citation Format

Share Document