The functional organization of posterior parietal association cortex

1980 ◽  
Vol 3 (4) ◽  
pp. 485-499 ◽  
Author(s):  
James C. Lynch

AbstractPosterior parietal cortex has traditionally been considered to be a sensory association area in which higher-order processing and intermodal integration of incoming sensory information occurs. In this paper, evidence from clinical reports and from lesion and behavioral-electrophysiological experiments using monkeys is reviewed and discussed in relation to the overall functional organization of posterior parietal association cortex, and particularly with respect to a proposed posterior parietal mechanism concerned with the initiation and control of certain classes of eye and limb movements. Preliminary data from studies of the effects of posterior parietal lesions on oculomotor control in monkeys are reported.The behavioral effects of lesions of posterior parietal cortex in monkeys have been found to be similar to those which follow analogous damage of the minor hemisphere in humans, while behavioral-electrophysiological experiments have disclosed classes of neurons in this area which have functional properties closely related to the behavioral acts that are disrupted by lesions of the area. On the basis of current data from these areas of study, it is proposed that the sensory association model of posterior parietal function is inadequate to account for the complexities of the present evidence. Instead, it now appears that many diverse neural mechanisms are locatedin partin parietal cortex, that some of these mechanisms are involved in sensory processing and perceptual functions, but that others participate in motor control, and that still others are involved in attentional, motivational, or emotional processes. It is further proposed that the elementary units of these various neural mechanisms are distributed within posterior parietal cortex according to the columnar hypothesis of Mountcastle.

2013 ◽  
Vol 109 (12) ◽  
pp. 2897-2908 ◽  
Author(s):  
Christina S. Konen ◽  
Ryan E. B. Mruczek ◽  
Jessica L. Montoya ◽  
Sabine Kastner

The act of reaching to grasp an object requires the coordination between transporting the arm and shaping the hand. Neurophysiological, neuroimaging, neuroanatomic, and neuropsychological studies in macaque monkeys and humans suggest that the neural networks underlying grasping and reaching acts are at least partially separable within the posterior parietal cortex (PPC). To better understand how these neural networks have evolved in primates, we characterized the relationship between grasping- and reaching-related responses and topographically organized areas of the human intraparietal sulcus (IPS) using functional MRI. Grasping-specific activation was localized to the left anterior IPS, partially overlapping with the most anterior topographic regions and extending into the postcentral sulcus. Reaching-specific activation was localized to the left precuneus and superior parietal lobule, partially overlapping with the medial aspects of the more posterior topographic regions. Although the majority of activity within the topographic regions of the IPS was nonspecific with respect to movement type, we found evidence for a functional gradient of specificity for reaching and grasping movements spanning posterior-medial to anterior-lateral PPC. In contrast to the macaque monkey, grasp- and reach-specific activations were largely located outside of the human IPS.


2019 ◽  
Vol 122 (4) ◽  
pp. 1765-1776 ◽  
Author(s):  
Maryam Ghahremani ◽  
Kevin D. Johnston ◽  
Liya Ma ◽  
Lauren K. Hayrynen ◽  
Stefan Everling

The common marmoset ( Callithrix jacchus) is a small-bodied New World primate increasing in prominence as a model animal for neuroscience research. The lissencephalic cortex of this primate species provides substantial advantages for the application of electrophysiological techniques such as high-density and laminar recordings, which have the capacity to advance our understanding of local and laminar cortical circuits and their roles in cognitive and motor functions. This is particularly the case with respect to the oculomotor system, as critical cortical areas of this network such as the frontal eye fields (FEF) and lateral intraparietal area (LIP) lie deep within sulci in macaques. Studies of cytoarchitecture and connectivity have established putative homologies between cortical oculomotor fields in marmoset and macaque, but physiological investigations of these areas, particularly in awake marmosets, have yet to be carried out. Here we addressed this gap by probing the function of posterior parietal cortex of the common marmoset with electrical microstimulation. We implanted two animals with 32-channel Utah arrays at the location of the putative area LIP and applied microstimulation while they viewed a video display and made untrained eye movements. Similar to previous studies in macaques, stimulation evoked fixed-vector and goal-directed saccades, staircase saccades, and eyeblinks. These data demonstrate that area LIP of the marmoset plays a role in the regulation of eye movements, provide additional evidence that this area is homologous with that of the macaque, and further establish the marmoset as a valuable model for neurophysiological investigations of oculomotor and cognitive control. NEW & NOTEWORTHY The macaque monkey has been the preeminent model for investigations of oculomotor control, but studies of cortical areas are limited, as many of these areas are buried within sulci in this species. Here we applied electrical microstimulation to the putative area LIP of the lissencephalic cortex of awake marmosets. Similar to the macaque, microstimulation evoked contralateral saccades from this area, supporting the marmoset as a valuable model for studies of oculomotor control.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Guilhem Ibos ◽  
David J Freedman

Decisions about the behavioral significance of sensory stimuli often require comparing sensory inference of what we are looking at to internal models of what we are looking for. Here, we test how neuronal selectivity for visual features is transformed into decision-related signals in posterior parietal cortex (area LIP). Monkeys performed a visual matching task that required them to detect target stimuli composed of conjunctions of color and motion-direction. Neuronal recordings from area LIP revealed two main findings. First, the sequential processing of visual features and the selection of target-stimuli suggest that LIP is involved in transforming sensory information into decision-related signals. Second, the patterns of color and motion selectivity and their impact on decision-related encoding suggest that LIP plays a role in detecting target stimuli by comparing bottom-up sensory inputs (what the monkeys were looking at) and top-down cognitive encoding inputs (what the monkeys were looking for).


2015 ◽  
Vol 112 (44) ◽  
pp. 13525-13530 ◽  
Author(s):  
Ben M. Harvey ◽  
Alessio Fracasso ◽  
Natalia Petridou ◽  
Serge O. Dumoulin

Humans and many animals analyze sensory information to estimate quantities that guide behavior and decisions. These quantities include numerosity (object number) and object size. Having recently demonstrated topographic maps of numerosity, we ask whether the brain also contains maps of object size. Using ultra-high-field (7T) functional MRI and population receptive field modeling, we describe tuned responses to visual object size in bilateral human posterior parietal cortex. Tuning follows linear Gaussian functions and shows surround suppression, and tuning width narrows with increasing preferred object size. Object size-tuned responses are organized in bilateral topographic maps, with similar cortical extents responding to large and small objects. These properties of object size tuning and map organization all differ from the numerosity representation, suggesting that object size and numerosity tuning result from distinct mechanisms. However, their maps largely overlap and object size preferences correlate with numerosity preferences, suggesting associated representations of these two quantities. Object size preferences here show no discernable relation to visual position preferences found in visuospatial receptive fields. As such, object size maps (much like numerosity maps) do not reflect sensory organ structure but instead emerge within the brain. We speculate that, as in sensory processing, optimization of cognitive processing using topographic maps may be a common organizing principle in association cortex. Interactions between object size and numerosity maps may associate cognitive representations of these related features, potentially allowing consideration of both quantities together when making decisions.


2020 ◽  
Vol 123 (3) ◽  
pp. 896-911 ◽  
Author(s):  
Liya Ma ◽  
Janahan Selvanayagam ◽  
Maryam Ghahremani ◽  
Lauren K. Hayrynen ◽  
Kevin D. Johnston ◽  
...  

Abnormal saccadic eye movements can serve as biomarkers for patients with several neuropsychiatric disorders. The common marmoset ( Callithrix jacchus) is becoming increasingly popular as a nonhuman primate model to investigate the cortical mechanisms of saccadic control. Recently, our group demonstrated that microstimulation in the posterior parietal cortex (PPC) of marmosets elicits contralateral saccades. Here we recorded single-unit activity in the PPC of the same two marmosets using chronic microelectrode arrays while the monkeys performed a saccadic task with gap trials (target onset lagged fixation point offset by 200 ms) interleaved with step trials (fixation point disappeared when the peripheral target appeared). Both marmosets showed a gap effect, shorter saccadic reaction times (SRTs) in gap vs. step trials. On average, stronger gap-period responses across the entire neuronal population preceded shorter SRTs on trials with contralateral targets although this correlation was stronger among the 15% “gap neurons,” which responded significantly during the gap. We also found 39% “target neurons” with significant saccadic target-related responses, which were stronger in gap trials and correlated with the SRTs better than the remaining neurons. Compared with saccades with relatively long SRTs, short-SRT saccades were preceded by both stronger gap-related and target-related responses in all PPC neurons, regardless of whether such response reached significance. Our findings suggest that the PPC in the marmoset contains an area that is involved in the modulation of saccadic preparation. NEW & NOTEWORTHY As a primate model in systems neuroscience, the marmoset is a great complement to the macaque monkey because of its unique advantages. To identify oculomotor networks in the marmoset, we recorded from the marmoset posterior parietal cortex during a saccadic task and found single-unit activities consistent with a role in saccadic modulation. This finding supports the marmoset as a valuable model for studying oculomotor control.


2012 ◽  
Vol 107 (11) ◽  
pp. 3190-3199 ◽  
Author(s):  
Anke Karabanov ◽  
Seung-Hyun Jin ◽  
Atte Joutsen ◽  
Brach Poston ◽  
Joshua Aizen ◽  
...  

Interplay between posterior parietal cortex (PPC) and ipsilateral primary motor cortex (M1) is crucial during execution of movements. The purpose of the study was to determine whether functional PPC–M1 connectivity in humans can be modulated by sensorimotor training. Seventeen participants performed a sensorimotor training task that involved tapping the index finger in synchrony to a rhythmic sequence. To explore differences in training modality, one group ( n = 8) learned by visual and the other ( n = 9) by auditory stimuli. Transcranial magnetic stimulation (TMS) was used to assess PPC–M1 connectivity before and after training, whereas electroencephalography (EEG) was used to assess PPC–M1 connectivity during training. Facilitation from PPC to M1 was quantified using paired-pulse TMS at conditioning-test intervals of 2, 4, 6, and 8 ms by measuring motor-evoked potentials (MEPs). TMS was applied at baseline and at four time points (0, 30, 60, and 180 min) after training. For EEG, task-related power and coherence were calculated for early and late training phases. The conditioned MEP was facilitated at a 2-ms conditioning-test interval before training. However, facilitation was abolished immediately following training, but returned to baseline at subsequent time points. Regional EEG activity and interregional connectivity between PPC and M1 showed an initial increase during early training followed by a significant decrease in the late phases. The findings indicate that parietal–motor interactions are activated during early sensorimotor training when sensory information has to be integrated into a coherent movement plan. Once the sequence is encoded and movements become automatized, PPC–M1 connectivity returns to baseline.


2013 ◽  
Vol 24 (9) ◽  
pp. 2334-2349 ◽  
Author(s):  
F. Katsuki ◽  
X.-L. Qi ◽  
T. Meyer ◽  
P. M. Kostelic ◽  
E. Salinas ◽  
...  

2014 ◽  
Vol 111 (4) ◽  
pp. 705-714 ◽  
Author(s):  
Indra T. Mahayana ◽  
Chia-Lun Liu ◽  
Chi Fu Chang ◽  
Daisy L. Hung ◽  
Ovid J. L. Tzeng ◽  
...  

Near- and far-space coding in the human brain is a dynamic process. Areas in dorsal, as well as ventral visual association cortex, including right posterior parietal cortex (rPPC), right frontal eye field (rFEF), and right ventral occipital cortex (rVO), have been shown to be important in visuospatial processing, but the involvement of these areas when the information is in near or far space remains unclear. There is a need for investigations of these representations to help explain the pathophysiology of hemispatial neglect, and the role of near and far space is crucial to this. We used a conjunction visual search task using an elliptical array to investigate the effects of transcranial magnetic stimulation delivered over rFEF, rPPC, and rVO on the processing of targets in near and far space and at a range of horizontal eccentricities. As in previous studies, we found that rVO was involved in far-space search, and rFEF was involved regardless of the distance to the array. It was found that rPPC was involved in search only in far space, with a neglect-like effect when the target was located in the most eccentric locations. No effects were seen for any site for a feature search task. As the search arrays had higher predictability with respect to target location than is often the case, these data may form a basis for clarifying both the role of PPC in visual search and its contribution to neglect, as well as the importance of near and far space in these.


Sign in / Sign up

Export Citation Format

Share Document