Competitive state of movements during planning predicts sequence performance

2021 ◽  
Vol 125 (4) ◽  
pp. 1251-1268
Author(s):  
Myrto Mantziara ◽  
Tsvetoslav Ivanov ◽  
George Houghton ◽  
Katja Kornysheva

Sequence planning is an integral part of motor sequence control. Here, we demonstrate that the competitive state of sequential movements during sequence planning can be read out behaviorally through movement probes. We show that position-dependent differences in movement availability during planning reflect sequence preparedness and skill but not the timing of the planned sequence. Behavioral access to the preparatory state of movements may serve as a marker of sequence planning capacity.

2021 ◽  
Author(s):  
James Brown ◽  
Alex Chatburn ◽  
David Wright ◽  
Maarten Immink

Post-training meditation has been shown to promote wakeful motor memory stabilization in experienced meditators. We investigated the effect of single-session mindfulness meditation on wakeful and sleep-dependent forms of implicit motor memory consolidation in mediation naïve adults. Immediately after implicit sequence training, participants (N = 20, 8 females, Mage = 23.9 years ± 3.3) completed either a 10-minute focused attention meditation (N = 10), aiming to direct and sustain attention to breathing, or a control listening task. They were then exposed to interference through novel sequence training. Trained sequence performance was tested following a 5-hour wakeful period and again after a 15-hour period, which included sleep. Bayesian inference was applied to group comparison of mean reaction time (MRT) changes across training, interference, wakeful and post-sleep time points. Relative to control conditions, post-training meditation reduced novel sequence interference (BF10 = 6.61) and improved wakeful motor memory consolidation (BF10 = 8.34). No group differences in sleep consolidation were evident (BF10 = 0.38). These findings illustrate that post-training mindfulness meditation expedites wakeful offline learning of an implicit motor sequence in meditation naïve adults. Interleaving mindfulness meditation between acquisition of a target motor sequence and exposure to an interfering motor sequence reduced proactive and retroactive inference. Post-training mindfulness meditation did not enhance nor inhibit sleep-dependent offline learning of a target implicit motor sequence. Previous meditation training is not required to obtain wakeful consolidation gains from post-training mindfulness meditation.


2017 ◽  
Vol 60 (6) ◽  
pp. 1477-1492 ◽  
Author(s):  
Jason A. Whitfield ◽  
Alexander M. Goberman

Purpose The aim of the current investigation was to examine speech motor sequence learning in neurologically healthy younger adults, neurologically healthy older adults, and individuals with Parkinson disease (PD) over a 2-day period. Method A sequential nonword repetition task was used to examine learning over 2 days. Participants practiced a sequence of 6 monosyllabic nonwords that was retested following nighttime sleep. The speed and accuracy of the nonword sequence were measured, and learning was inferred by examining performance within and between sessions. Results Though all groups exhibited comparable improvements of the nonword sequence performance during the initial session, between-session retention of the nonword sequence differed between groups. Younger adult controls exhibited offline gains, characterized by an increase in the speed and accuracy of nonword sequence performance across sessions, whereas older adults exhibited stable between-session performance. Individuals with PD exhibited offline losses, marked by an increase in sequence duration between sessions. Conclusions The current results demonstrate that both PD and normal aging affect retention of speech motor learning. Furthermore, these data suggest that basal ganglia dysfunction associated with PD may affect the later stages of speech motor learning. Findings from the current investigation are discussed in relation to studies examining consolidation of nonspeech motor learning.


2016 ◽  
Vol 10 ◽  
Author(s):  
Marianne A. Stephan ◽  
Rachel Brown ◽  
Carlotta Lega ◽  
Virginia Penhune

2020 ◽  
Author(s):  
Myrto Mantziara ◽  
Tsvetoslav Ivanov ◽  
George Houghton ◽  
Katja Kornysheva

SummaryHumans can learn and retrieve novel skilled movement sequences from memory, yet the content and structure of sequence planning are not well understood. Previous computational and neurophysiological work suggests that actions in a sequence are planned as parallel graded activations and selected for output through competition (competitive queuing; CQ). However, the relevance of CQ during planning to sequence fluency and accuracy, as opposed to sequence timing, is unclear. To resolve this question, we assessed the competitive state of constituent actions behaviourally during sequence preparation. In three separate multi-session experiments, 55 healthy participants were trained to retrieve and produce 4-finger sequences with particular timing from long-term memory. In addition to sequence production, we evaluated reaction time (RT) and error rate increase to constituent action probes at several points during the preparation period. Our results demonstrate that longer preparation time produces a steeper CQ activation and selection gradient between adjacent sequence elements, whilst no effect was found for sequence speed or temporal structure. Further, participants with a steeper CQ gradient tended to produce correct sequences faster and with a higher temporal accuracy. In a computational model, we hypothesize that the CQ gradient during planning is driven by the width of acquired positional tuning of each sequential item, independently of timing. Our results suggest that competitive activation during sequence planning is established gradually during sequence planning and predicts sequence fluency and accuracy, rather than the speed or temporal structure of the motor sequence.HighlightsPre-ordering of actions during sequence planning can be assessed behaviourallyCompetitive gradient reflects sequence preparedness and skill, but not speed or timingGradient is retrieved rapidly and revealed during automatic action selectionPositional tuning of actions boosts the competitive gradient during planning


Author(s):  
Mengkai Luan ◽  
Heiko Maurer ◽  
Arash Mirifar ◽  
Jürgen Beckmann ◽  
Felix Ehrlenspiel

Abstract Research has shown that contingent, distinct action effects have a beneficial influence on motor sequence performance. Previous studies showed the beneficial influence of task-irrelevant action effects from one modality (auditory) on motor sequence performance, compared with no task-irrelevant action effects. The present study investigated the influence of task-irrelevant action effects on motor sequence performance from a multiple-modality perspective. We compared motor sequence performances of participants who received different task-irrelevant action effects in an auditory, visual, or audiovisual condition. In the auditory condition, key presses produced tones of a C-major scale that mapped to keys from left to right in ascending order. In the visual condition, key presses produced rectangles in different locations on the screen that mapped to keys from left to right in ascending order. In the audiovisual condition, both tone and rectangle effects were produced simultaneously by key presses. There were advantages for the audiovisual group in motor sequence initiation and execution. The results implied that, compared with unimodal action effects, action effects from multiple sensory modalities can prime an action faster and strengthen associations between successive actions, leading to faster motor sequence performance.


2014 ◽  
Vol 46 (6) ◽  
pp. 407-414 ◽  
Author(s):  
Flávia Priscila de Paiva Silva ◽  
Sandra Maria Sbeghen Ferreira de Freitas ◽  
Priscila Viana Silva ◽  
Renata Morales Banjai ◽  
Sandra Regina Alouche

2020 ◽  
Vol 384 ◽  
pp. 112536 ◽  
Author(s):  
Russell W. Chan ◽  
Phillip M. Alday ◽  
Lena Zou-Williams ◽  
Kurt Lushington ◽  
Matthias Schlesewsky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document