scholarly journals Altered intrinsic connectivity of the auditory cortex in congenital amusia

2016 ◽  
Vol 116 (1) ◽  
pp. 88-97 ◽  
Author(s):  
Yohana Leveque ◽  
Baptiste Fauvel ◽  
Mathilde Groussard ◽  
Anne Caclin ◽  
Philippe Albouy ◽  
...  

Congenital amusia, a neurodevelopmental disorder of music perception and production, has been associated with abnormal anatomical and functional connectivity in a right frontotemporal pathway. To investigate whether spontaneous connectivity in brain networks involving the auditory cortex is altered in the amusic brain, we ran a seed-based connectivity analysis, contrasting at-rest functional MRI data of amusic and matched control participants. Our results reveal reduced frontotemporal connectivity in amusia during resting state, as well as an overconnectivity between the auditory cortex and the default mode network (DMN). The findings suggest that the auditory cortex is intrinsically more engaged toward internal processes and less available to external stimuli in amusics compared with controls. Beyond amusia, our findings provide new evidence for the link between cognitive deficits in pathology and abnormalities in the connectivity between sensory areas and the DMN at rest.

2018 ◽  
Author(s):  
A. Pralus ◽  
L. Fornoni ◽  
R. Bouet ◽  
M. Gomot ◽  
A. Bhatara ◽  
...  

AbstractCongenital amusia is a lifelong deficit of music processing, in particular of pitch processing. Most research investigating this neurodevelopmental disorder has focused on music perception, but pitch also has a critical role for intentional and emotional prosody in speech. Two previous studies investigating amusics’ emotional prosody recognition have shown either some deficit or no deficit (compared to controls). However, these previous studies have used only long sentence stimuli, which allow for limited control over acoustic content. Here, we tested amusic individuals for emotional prosody perception in sentences and vowels. For each type of material, participants performed an emotion categorization task, followed by intensity ratings of the recognized emotion. Compared to controls, amusic individuals had similar recognition of emotion in sentences, but poorer performance in vowels, especially when distinguishing sad and neutral stimuli. These lower performances in amusics were linked with difficulties in processing pitch and spectro-temporal parameters of the vowel stimuli. For emotion intensity, neither sentence nor vowel ratings differed between participant groups, suggesting preserved implicit processing of emotional prosody in amusia. These findings can be integrated into previous data showing preserved implicit processing of pitch and emotion in amusia alongside deficits in explicit recognition tasks. They are thus further supporting the hypothesis of impaired conscious analysis of pitch and timbre in this neurodevelopmental disorder.HighlightsAmusics showed preserved emotional prosody recognition in sentencesAmusics showed a deficit for emotional prosody recognition in short voice samplesPreserved intensity ratings of emotions in amusia suggest spared implicit processes


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Julia Friedrich ◽  
Henriette Spaleck ◽  
Ronja Schappert ◽  
Maximilian Kleimaker ◽  
Julius Verrel ◽  
...  

AbstractIt is a common phenomenon that somatosensory sensations can trigger actions to alleviate experienced tension. Such “urges” are particularly relevant in patients with Gilles de la Tourette (GTS) syndrome since they often precede tics, the cardinal feature of this common neurodevelopmental disorder. Altered sensorimotor integration processes in GTS as well as evidence for increased binding of stimulus- and response-related features (“hyper-binding”) in the visual domain suggest enhanced perception–action binding also in the somatosensory modality. In the current study, the Theory of Event Coding (TEC) was used as an overarching cognitive framework to examine somatosensory-motor binding. For this purpose, a somatosensory-motor version of a task measuring stimulus–response binding (S-R task) was tested using electro-tactile stimuli. Contrary to the main hypothesis, there were no group differences in binding effects between GTS patients and healthy controls in the somatosensory-motor paradigm. Behavioral data did not indicate differences in binding between examined groups. These data can be interpreted such that a compensatory “downregulation” of increased somatosensory stimulus saliency, e.g., due to the occurrence of somatosensory urges and hypersensitivity to external stimuli, results in reduced binding with associated motor output, which brings binding to a “normal” level. Therefore, “hyper-binding” in GTS seems to be modality-specific.


2017 ◽  
Vol 31 (2) ◽  
pp. 218-226 ◽  
Author(s):  
Saskia Steinmann ◽  
Jan Meier ◽  
Guido Nolte ◽  
Andreas K. Engel ◽  
Gregor Leicht ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e93544 ◽  
Author(s):  
Dustin Scheinost ◽  
Xilin Shen ◽  
Emily Finn ◽  
Rajita Sinha ◽  
R. Todd Constable ◽  
...  

Brain ◽  
2013 ◽  
Vol 136 (5) ◽  
pp. 1639-1661 ◽  
Author(s):  
Philippe Albouy ◽  
Jérémie Mattout ◽  
Romain Bouet ◽  
Emmanuel Maby ◽  
Gaëtan Sanchez ◽  
...  

Author(s):  
Izabella Trinta Paes ◽  
Mayara Miyahara Moraes Silva ◽  
Ana Paula Roim Micieli ◽  
Maria Cristina Triguero Veloz Teixeira ◽  
Luiz Renato Rodrigues Carreiro

Introduction: Attention Deficit Hyperactivity Disorder (ADHD) is a neurodevelopmental disorder with persistent levels of inattention, hyperactivity or impulsivity. Recommendations for ADHD diagnosis involve: six or more symptoms (or five considering adults), early childhood onset, presence of symptoms in two or more contexts and presence of functional impairment. Cognitive deficits, that affect inhibitory control, cognitive flexibility and impulsiveness, are present in ADHD and affect the course of the disorder. On the other hand, intellectual skill is a factor of protection to improve the development in people with ADHD.  This article explores how traits relate to functional impairments are relevant to ADHD description in terms of behavioral expression of the cognitive profile. Method: Forty-nine adults, between 20 and 68 years old, with symptoms of inattention and hyperactivity/impulsivity compatible with ADHD, with more than 4 years of schooling and absence of chronic illness, took part of this study. We collected data using screening instruments (ASRS-18, MMSE, and WASI) and main instruments (FDT, BIS-11, and EPF-ADHD). Results: The results have shown that higher intellectual indexes were associated with lower frequencies of academic impairment, while higher impulsivity levels, cognitive flexibility difficulties and inhibitory control, were associated with academic and social impairment. Conclusion: The results show that cognitive deficits were associated to impairment, in different life areas, of people with ADHD, and that some factors, as intellectual abilities, may prevent impairment in ADHD.


2016 ◽  
Author(s):  
Elena Krugliakova ◽  
Alexey Gorin ◽  
Anna Shestakova ◽  
Tommaso Fedele ◽  
Vasily Klucharev

AbstractThe decision-making process is exposed to modulatory factors, and, according to the expected value (EV) concept the two most influential factors are magnitude of prospective behavioural outcome and probability of receiving this outcome. The discrepancy between received and predicted outcomes is reflected by the reward prediction error (RPE), which is believed to play a crucial role in learning in dynamic environment. Feedback related negativity (FRN), a frontocentral negative component registered in EEG during feedback presentation, has been suggested as a neural signature of RPE. In modern neurobiological models of decision-making the primary sensory input is assumed to be constant over the time and independent of the evaluation of the option associated to it. In this study we investigated whether the electrophysiological changes in auditory cues perception is modulated by the strengths of reinforcement signal, represented in the EEG as FRN.We quantified the changes in sensory processing through a classical passive oddball paradigm before and after performance a neuroeconomic monetary incentive delay (MID) task. Outcome magnitude and probability were encoded in the physical characteristics of auditory incentive cues. We evaluated the association between individual biomarkers of reinforcement signal (FRN) and the degree of perceptual learning, reflected by changes in auditory ERP components (mismatch negativity and P3a). We observed a significant correlation of MMN and valence - dFRN, reflecting differential processing of gains and omission of gains. Changes in P3a were correlated to probability - dFRN, including information on salience of the outcome, in addition to its valence.MID task performance evokes plastic changes associated with more fine-grained discrimination of auditory anticipatory cues and enhanced involuntary attention switch towards these cues. Observed signatures of neuro-plasticity of the auditory cortex may play an important role in learning and decision-making processes through facilitation of perceptual discrimination of valuable external stimuli. Thus, the sensory processing of options and the evaluation of options are not independent as implicitly assumed by the modern neuroeconomics models of decision-making.


Author(s):  
Stefan Koelsch

During listening, acoustic features of sounds are extracted in the auditory system (in the auditory brainstem, thalamus, and auditory cortex). To establish auditory percepts of melodies and rhythms (i.e., to establish auditory “Gestalten” and auditory objects), sound information is buffered and processed in the auditory sensory memory. Musical structure is then processed based on acoustical similarities and rhythmical organization. In addition, musical structure is processed according to (implicit) knowledge about musical regularities underlying scales, melodic and harmonic progressions, and so on. These structures are based on both local and (hierarchically organized) nonlocal dependencies. This chapter reviews neural correlates of these processes, with regard to both brain-electric responses to sounds, and the neuroanatomical architecture of music perception.


2007 ◽  
Vol 190 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Daniela Hubl ◽  
Thomas Koenig ◽  
Werner K. Strik ◽  
Lester Melie Garcia ◽  
Thomas Dierks

BackgroundHallucinations are perceptions in the absence of a corresponding external sensory stimulus. However, during auditory verbal hallucinations, activation of the primary auditory cortex has been described.AimsThe objective of this study was to investigate whether this activation of the auditory cortex contributes essentially to the character of hallucinations and attributes them to alien sources, or whether the auditory activation is a sign of increased general auditory attention to external sounds.MethodThe responsiveness of the auditory cortex was investigated by auditory evoked potentials (N100) during the simultaneous occurrence of hallucinations and external stimuli. Evoked potentials were computed separately for periods with and without hallucinations; N100 power, topography and brain electrical sources were analysed.ResultsHallucinations lowered the N100 amplitudes and changed the topography, presumably due to a reduced left temporal responsivity.ConclusionsThis finding indicates competition between auditory stimuli and hallucinations for physiological resources in the primary auditory cortex. The abnormal activation of the primary auditory cortex may thus be a constituent of auditory hallucinations.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (12) ◽  
pp. 903-907 ◽  
Author(s):  
Stephen I. Deutsch ◽  
Richard B. Rosse ◽  
Barbara L. Schwartz

ABSTRACTWilliams syndrome is a neurodevelopmental disorder that results from the deletion of ~25-30 genes spanning about 1.5 megabases in the q11.23 region of chromosome 7. Patients with this syndrome present with a combination of a distinctive elfin-like facial appearance; growth retardation; mild mental retardation; an inconsistent cognitive profile that includes visuospatial impairments with good facial discrimination and relatively preserved expressive language skills; and cardiovascular abnormalities. In addition, a striking behavioral feature of the syndrome is the high sociability and empathy that these patients show for others. The study of patients with “partial” deletions of the chromosome band 7q11.23, mutated genes in this region and knockout mice with deletions of specific genes in the homologous G1–G2 region of mouse chromosome 5 are clarifying some genotype/phenotype relationships. Futhermore, genes located in this region that are prominently expressed have been implicated in brain development and function.The neuropsychological profile of patients with Williams syndrome is heterogeneous, highlights important dissociations between cognitive functions and suggests that the behavioral dimensions of sociability, empathy, engageability, and talkativeness may be independent of, or not easily explained by, the cognitive deficits. Williams syndrome has enormous heuristic value because its pathological feature of heightened “sociability” can be a “deficit” symptom of major complex neuropsychiatrie disorders, such as schizophrenia and autism. Data consistent with a core inability of patients with Williams syndrome to inhibit social approach suggest that this disorder may afford an opportunity to study the biological basis of the “drive” toward socialization. From a research perspective, the syndrome lends itself to neurobiological studies of sociability as a dimension that varies independently of cognition (or at least many separable cognitive processes). Importantly, from a clinical perspective, the syndrome challenges us to administer strategic psychosocial interventions that take advantage of the opportunities that “pathological” sociability provide, while avoiding its threats. An illustrative example of an effective strategically planned psychosocial intervention for a patient with Williams syndrome is briefly presented.


Sign in / Sign up

Export Citation Format

Share Document