scholarly journals Changes in the Response Rate and Response Variability of Area V4 Neurons During the Preparation of Saccadic Eye Movements

2010 ◽  
Vol 103 (3) ◽  
pp. 1171-1178 ◽  
Author(s):  
Nicholas A. Steinmetz ◽  
Tirin Moore

The visually driven responses of macaque area V4 neurons are modulated during the preparation of saccadic eye movements, but the relationship between presaccadic modulation in area V4 and saccade preparation is poorly understood. Recent neurophysiological studies suggest that the variability across trials of spiking responses provides a more reliable signature of motor preparation than mean firing rate across trials. We compared the dynamics of the response rate and the variability in the rate across trials for area V4 neurons during the preparation of visually guided saccades. As in previous reports, we found that the mean firing rate of V4 neurons was enhanced when saccades were prepared to stimuli within a neuron's receptive field (RF) in comparison with saccades to a non-RF location. Further, we found robust decreases in response variability prior to saccades and found that these decreases predicted saccadic reaction times for saccades both to RF and non-RF stimuli. Importantly, response variability predicted reaction time whether or not there were any accompanying changes in mean firing rate. In addition to predicting saccade direction, the mean firing rate could also predict reaction time, but only for saccades directed to the RF stimuli. These results demonstrate that response variability of area V4 neurons, like mean response rate, provides a signature of saccade preparation. However, the two signatures reflect complementary aspects of that preparation.

1986 ◽  
Vol 55 (5) ◽  
pp. 1044-1056 ◽  
Author(s):  
H. P. Goldstein ◽  
D. A. Robinson

Two trained monkeys made saccadic eye movements to a small visual target. The activity of 39 isolated abducens units, presumed to be motoneurons or abducens internuclear neurons, was recorded in relation to these eye movements. After a calibration trial, a test trial repeatedly elicited 20 degrees horizontal saccades to primary position from either the left or right. On average, the steady-state firing rate at primary position depended on the direction of the saccade. For saccades where the neuron showed a burst in activity during the saccade (on-saccades) the steady-state firing rates were usually higher than for those saccades that showed a pause in activity during the saccade (off-saccades). For the population of units this hysteresis measured 5.4 spikes/s, which may be compared with an average primary-position rate of 97 spikes/s. The average hysteresis for individual units ranged from -2.1 to 18.5 spikes/s. The steady-state firing rate after equal saccades in the same direction and ending at the same position (primary) varied slowly over time. Across all units the variability (standard deviation) ranged from 0.5 to 11.8 spikes/s with a mean of 4.7 spikes/s. Furthermore, for any one unit the variations following on-saccades generally correlated with the variations following the off-saccades. Hysteresis, doubted by many, does exist. Fortunately, it is small enough, 5.5% of typical primary-position rate, that it can be neglected for many purposes. Nevertheless, it poses the interesting theoretical question of how the oculomotor system compensates for hysteresis. The simplest explanation of slow variations in background rate is cocontractive noise: a slow fluctuation in all abducens neurons so that these variations do not result in fluctuations of eye position.


1995 ◽  
Vol 74 (1) ◽  
pp. 273-287 ◽  
Author(s):  
T. Kitama ◽  
Y. Ohki ◽  
H. Shimazu ◽  
M. Tanaka ◽  
K. Yoshida

1. Extracellular spikes of burster-driving neurons (BDNs) were recorded within and immediately below the prepositus hypoglossi nucleus in the alert cat. BDNs were characterized by short-latency activation after stimulation of the contralateral vestibular nerve (latency: 1.4-2.7 ms) and the ipsilateral superior colliculus (latency: 1.7-3.5 ms). Convergence of vestibular and collicular inputs was found in all of 85 BDNs tested. Firing of BDNs increased during contralateral horizontal head rotation and decreased during ipsilateral rotation. A burst of spikes was induced in association with contralateral saccades and quick phases of nystagmus. 2. BDNs showed irregular tonic discharges during fixation. There was no significant correlation between the firing rate during fixation and horizontal or vertical eye position in most BDNs. During horizontal sinusoidal head rotation, the change in firing rate was approximately proportional to and in phase with contralateral head velocity. The phase lag of the response relative to head angular velocity was 13.8 +/- 20.1 degrees (mean +/- SD) at 0.5 Hz and 7.2 +/- 13.5 degrees at 0.2 Hz on the average. The gain was 0.88 +/- 0.25 (spikes/s)/(degrees/s) at 0.5 Hz and 1.19 +/- 0.49 (spikes/s)/(degrees/s) at 0.2 Hz. 3. Quantitative analysis of burst activity associated with saccades or quick phases indicated that the ON direction of BDNs was contralateral horizontal. The number of spikes in the burst was linearly related to the amplitude of the contralateral component of rapid eye movements. The slope of regression line was, on the average, 1.14 +/- 0.48 spikes/deg. There was no significant difference between the mean slopes for saccades and quick phases. The number of spikes depended on the difference between initial and final horizontal eye positions and not on the absolute eye position in the orbit. The mean burst firing rate was proportional to the mean velocity of the contralateral component of rapid eye movements. The slope of the regression line was 0.82 +/- 0.34 (spikes/s)/(degrees/s). Significant correlation was also found between intraburst instantaneous firing rate and instantaneous component eye velocity. 4. Objects presented in the contralateral visual field elicited a brief burst of spikes in BDNs independent of any eye movement. Contralateral saccades to the target were preceded by an early response to the visual stimulus and subsequent response associated with eye movement. 5. Excitation of BDNs produced by stimulation of the ipsilateral superior colliculus was facilitated by contralateral horizontal head rotation. Therefore saccadic signals from the superior colliculus to BDNs may be augmented by vestibular signals during head rotation.(ABSTRACT TRUNCATED AT 400 WORDS)


2003 ◽  
Vol 89 (6) ◽  
pp. 2984-2999 ◽  
Author(s):  
Krista Kornylo ◽  
Natalie Dill ◽  
Melissa Saenz ◽  
Richard J. Krauzlis

The countermanding paradigm provides a useful tool for examining the mechanisms responsible for canceling eye movements. The key feature of this paradigm is that, on a minority of trials, a stop signal is introduced some time after the appearance of the target, indicating that the subject should cancel the incipient eye movement. If the delay in giving the stop signal is too long, subjects fail to cancel the eye movement to the target stimulus. By modeling this performance as a race between a go process triggered by the appearance of the target and a stop process triggered by the appearance of the stop signal, it is possible to estimate the processing interval associated with canceling the movement. We have now used this paradigm to analyze the canceling of pursuit and saccades. For pursuit, we obtained consistent estimates of the stop process regardless of our technique or assumptions—it took 50–60 ms to cancel pursuit in both humans and monkeys. For saccades, we found different values depending on our assumptions. When we assumed that saccade preparation was under inhibitory control up until movement onset, we found that saccades took longer to cancel (humans: ∼110, monkeys: ∼80 ms) than pursuit. However, when we assumed that saccade preparation includes a final “ballistic” interval not under inhibitory control, we found that the same rapid stop process that accounted for our pursuit results could also account for the canceling of saccades. We favor this second interpretation because canceling pursuit or saccades amounts to maintaining a state of fixation, and it is more parsimonious to assume that this involves a single inhibitory process associated with the fixation system, rather than two separate inhibitory processes depending on which type of eye movement will not be made. From our behavioral data, we estimate that this ballistic interval has a duration of 9–25 ms in monkeys, consistent with the known physiology of the final motor pathways for saccades, although we obtained longer values in humans (28–60 ms). Finally, we examined the effect of trial sequence during the countermanding task and found that pursuit and saccade latencies tended to be longer if the previous trial contained a stop signal than if it did not; these increases occurred regardless of whether the preceding trial was associated with the same or different type of eye movement. Together, these results suggest that a common inhibitory mechanism regulates the initiation of pursuit and saccades.


1994 ◽  
Vol 11 (2) ◽  
pp. 229-241 ◽  
Author(s):  
Peter H. Schiller ◽  
Kyoungmin Lee

AbstractVisually guided saccadic eye movements to singly presented stationary targets form a bimodal distribution. After superior colliculus lesions, the so called “express saccades” that form the first mode of the distribution are no longer obtained. The aim of this study was to determine what role several other neural systems play in the generation of express and regular saccades, with the latter being those that form the second mode in the bimodal distribution. Lesions were made in the parvocellular and magnocellular portions of the lateral geniculate nucleus to disrupt either the midget system or the parasol system that originates in the retina and areas V4 and MT. The effects of the lesions were examined on the accuracy and latency of saccadic eye movements made to stationary and to moving visual targets. Following magnocellular and MT lesions deficits were observed in smooth pursuit and in the amplitude of saccades made to moving targets. However, none of the lesions produced significant changes in the bimodal distribution of saccadic latencies to stationary targets. The results suggest that express saccades and regular saccades are not selectively mediated by either the midget or the parasol systems or by areas V4 and MT. Neither are the frontal eye fields involved as had previously been shown. We suggest that the superior colliculus plays a central role in producing both express and regular saccades by virtue of highly convergent input from numerous cortical structures.


2016 ◽  
Vol 28 (5) ◽  
pp. 849-881 ◽  
Author(s):  
Giuseppe Vinci ◽  
Valérie Ventura ◽  
Matthew A. Smith ◽  
Robert E. Kass

Populations of cortical neurons exhibit shared fluctuations in spiking activity over time. When measured for a pair of neurons over multiple repetitions of an identical stimulus, this phenomenon emerges as correlated trial-to-trial response variability via spike count correlation (SCC). However, spike counts can be viewed as noisy versions of firing rates, which can vary from trial to trial. From this perspective, the SCC for a pair of neurons becomes a noisy version of the corresponding firing rate correlation (FRC). Furthermore, the magnitude of the SCC is generally smaller than that of the FRC and is likely to be less sensitive to experimental manipulation. We provide statistical methods for disambiguating time-averaged drive from within-trial noise, thereby separating FRC from SCC. We study these methods to document their reliability, and we apply them to neurons recorded in vivo from area V4 in an alert animal. We show how the various effects we describe are reflected in the data: within-trial effects are largely negligible, while attenuation due to trial-to-trial variation dominates and frequently produces comparisons in SCC that, because of noise, do not accurately reflect those based on the underlying FRC.


2017 ◽  
Author(s):  
Abed Ghanbari ◽  
Christopher M. Lee ◽  
Heather L. Read ◽  
Ian H. Stevenson

AbstractNeural responses to repeated presentations of an identical stimulus often show substantial trial-to-trial variability. How the mean firing rate varies in response to different stimuli or during different movements (tuning curves) has been extensively modeled in a wide variety of neural systems. However, the variability of neural responses can also have clear tuning independent of the tuning in the mean firing rate. This suggests that the variability could contain information regarding the stimulus/movement beyond what is encoded in the mean firing rate. Here we demonstrate how taking variability into account can improve neural decoding. In a typical neural coding model spike counts are assumed to be Poisson with the mean response depending on an external variable, such as a stimulus or movement. Bayesian decoding methods then use the probabilities under these Poisson tuning models (the likelihood) to estimate the probability of each stimulus given the spikes on a given trial (the posterior). However, under the Poisson model, spike count variability is always exactly equal to the mean (Fano factor = 1). Here we use two alternative models - the Conway-Maxwell-Poisson (CMP) model and Negative Binomial (NB) model - to more flexibly characterize how neural variability depends on external stimuli. These models both contain the Poisson distribution as a special case but have an additional parameter that allows the variance to be greater than the mean (Fano factor >1) or, for the CMP model, less than the mean (Fano factor <1). We find that neural responses in primary motor (M1), visual (V1), and auditory (A1) cortices have diverse tuning in both their mean firing rates and response variability. Across cortical areas, we find that Bayesian decoders using the CMP or NB models improve stimulus/movement estimation accuracy by 4-12% compared to the Poisson model. Moreover, the uncertainty of the non-Poisson decoders more accurately reflects the magnitude of estimation errors. In addition to tuning curves that reflect average neural responses, stimulus-dependent response variability may be an important aspect of the neural code. Modeling this structure could, potentially, lead to improvements in brain machine interfaces.


2019 ◽  
Vol 121 (4) ◽  
pp. 1478-1490 ◽  
Author(s):  
Eva-Maria Reuter ◽  
Welber Marinovic ◽  
Timothy N. Welsh ◽  
Timothy J. Carroll

The characteristics of movements are strongly history-dependent. Marinovic et al. (Marinovic W, Poh E, de Rugy A, Carroll TJ. eLife 6: e26713, 2017) showed that past experience influences the execution of limb movements through a combination of temporally stable processes that are strictly use dependent and dynamically evolving and context-dependent processes that reflect prediction of future actions. Here we tested the basis of history-dependent biases for multiple spatiotemporal features of saccadic eye movements under two preparation time conditions (long and short). Twenty people performed saccades to visual targets. To prompt context-specific expectations of most likely target locations, 1 of 12 potential target locations was specified on ~85% of the trials and each remaining target was presented on ~1% trials. In long preparation trials participants were shown the location of the next target 1 s before its presentation onset, whereas in short preparation trials each target was first specified as the cue to move. Saccade reaction times and direction were biased by recent saccade history but according to distinct spatial tuning profiles. Biases were purely expectation related for saccadic reaction times, which increased linearly as the distance from the repeated target location increased when preparation time was short but were similar to all targets when preparation time was long. By contrast, the directions of saccades were biased toward the repeated target in both preparation time conditions, although to a lesser extent when the target location was precued (long preparation). The results suggest that saccade history affects saccade dynamics via both use- and expectation-dependent mechanisms and that movement history has dissociable effects on reaction time and saccadic direction. NEW & NOTEWORTHY The characteristics of our movements are influenced not only by concurrent sensory inputs but also by how we have moved in the past. For limb movements, history effects involve both use-dependent processes due strictly to movement repetition and processes that reflect prediction of future actions. Here we show that saccade history also affects saccade dynamics via use- and expectation-dependent mechanisms but that movement history has dissociable effects on saccade reaction time and direction.


1993 ◽  
Vol 69 (3) ◽  
pp. 800-818 ◽  
Author(s):  
G. S. Russo ◽  
C. J. Bruce

1. We quantitatively compared the effects of eye position within the orbit on saccadic eye movements electrically elicited from two oculomotor areas of the macaque monkey's frontal lobe cortex: the frontal eye field (FEF) and the supplementary eye field (SEF). 2. The effect of eye position on electrically elicited saccades was studied by delivering 70-ms trains of intracortical microstimulation while the monkeys fixated a spot of light. Tests of different fixation points located across a rectangular array were randomly intermixed. Complete experiments were carried out on 38 sites in three FEFs of two monkeys and 59 sites from three SEFs of the same two monkeys. Stimulation currents for the array experiments were usually 10–20 microA above the site threshold; the average current used was 36 microA for FEF and 49 microA for SEF. 3. The magnitude of effect of the initial eye position on the elicited saccade's dimensions was quantified at each site by computing the linear regression of saccadic eye movement displacement on the eye position within the orbit when stimulation was applied. This computation was done separately for the horizontal and vertical axes. We call the resulting pair of regression coefficients “orbital perturbation indexes.” Indexes of 0.0 represent elicited saccades that do not change their trajectory with different initial eye positions (constant-vector saccades), whereas indexes of -1.0 represent elicited saccades that end at the same orbital position regardless of initial eye position (goal-directed saccades). 4. The effect of eye position varied across sites. In both FEF and SEF, the orbital perturbation indexes were distributed between approximately 0.0 and -0.5, with the horizontal and vertical indexes highly correlated across sites. 5. The average orbital perturbation indexes were small for both eye fields and were not significantly different. The mean horizontal indexes were -0.13 and -0.16 for SEF and FEF, respectively. The mean vertical indexes were -0.16 and -0.13. Neither SEF versus FEF difference was statistically significant. 6. In both SEF and FEF, sites yielding larger-amplitude saccades generally had larger orbital effects than sites yielding smaller saccades. This relationship accounted for the majority of the variability of the orbital perturbation indexes across sites in both SEF and FEF. 7. These results indicate that SEF and FEF are not distinguished from each other by the orbital dependence of their electrically elicited saccades. Thus they do not confirm the previously hypothesized dichotomy that FEF codes constant-vector saccades and SEF codes goal-directed saccades.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document