Neuroimaging of Direction-Selective Mechanisms for Second-Order Motion

2003 ◽  
Vol 90 (5) ◽  
pp. 3242-3254 ◽  
Author(s):  
Shin'ya Nishida ◽  
Yuka Sasaki ◽  
Ikuya Murakami ◽  
Takeo Watanabe ◽  
Roger B. H. Tootell

Psychophysical findings have revealed a functional segregation of processing for 1st-order motion (movement of luminance modulation) and 2nd-order motion (e.g., movement of contrast modulation). However neural correlates of this psychophysical distinction remain controversial. To test for a corresponding anatomical segregation, we conducted a new functional magnetic resonance imaging (fMRI) study to localize direction-selective cortical mechanisms for 1st- and 2nd-order motion stimuli, by measuring direction-contingent response changes induced by motion adaptation, with deliberate control of attention. The 2nd-order motion stimulus generated direction-selective adaptation in a wide range of visual cortical areas, including areas V1, V2, V3, VP, V3A, V4v, and MT+. Moreover, the pattern of activity was similar to that obtained with 1st-order motion stimuli. Contrary to expectations from psychophysics, these results suggest that in the human visual cortex, the direction of 2nd-order motion is represented as early as V1. In addition, we found no obvious anatomical segregation in the neural substrates for 1st- and 2nd-order motion processing that can be resolved using standard fMRI.

2014 ◽  
Vol 111 (1) ◽  
pp. 112-127 ◽  
Author(s):  
L. Thaler ◽  
J. L. Milne ◽  
S. R. Arnott ◽  
D. Kish ◽  
M. A. Goodale

We have shown in previous research (Thaler L, Arnott SR, Goodale MA. PLoS One 6: e20162, 2011) that motion processing through echolocation activates temporal-occipital cortex in blind echolocation experts. Here we investigated how neural substrates of echo-motion are related to neural substrates of auditory source-motion and visual-motion. Three blind echolocation experts and twelve sighted echolocation novices underwent functional MRI scanning while they listened to binaural recordings of moving or stationary echolocation or auditory source sounds located either in left or right space. Sighted participants' brain activity was also measured while they viewed moving or stationary visual stimuli. For each of the three modalities separately (echo, source, vision), we then identified motion-sensitive areas in temporal-occipital cortex and in the planum temporale. We then used a region of interest (ROI) analysis to investigate cross-modal responses, as well as laterality effects. In both sighted novices and blind experts, we found that temporal-occipital source-motion ROIs did not respond to echo-motion, and echo-motion ROIs did not respond to source-motion. This double-dissociation was absent in planum temporale ROIs. Furthermore, temporal-occipital echo-motion ROIs in blind, but not sighted, participants showed evidence for contralateral motion preference. Temporal-occipital source-motion ROIs did not show evidence for contralateral preference in either blind or sighted participants. Our data suggest a functional segregation of processing of auditory source-motion and echo-motion in human temporal-occipital cortex. Furthermore, the data suggest that the echo-motion response in blind experts may represent a reorganization rather than exaggeration of response observed in sighted novices. There is the possibility that this reorganization involves the recruitment of “visual” cortical areas.


2014 ◽  
Vol 44 (11) ◽  
pp. 2385-2396 ◽  
Author(s):  
A. Wittmann ◽  
F. Schlagenhauf ◽  
A. Guhn ◽  
U. Lueken ◽  
C. Gaehlsdorf ◽  
...  

BackgroundPanic disorder with agoraphobia is characterized by panic attacks and anxiety in situations where escape might be difficult. However, neuroimaging studies specifically focusing on agoraphobia are rare. Here we used functional magnetic resonance imaging (fMRI) with disorder-specific stimuli to investigate the neural substrates of agoraphobia.MethodWe compared the neural activations of 72 patients suffering from panic disorder with agoraphobia with 72 matched healthy control subjects in a 3-T fMRI study. To isolate agoraphobia-specific alterations we tested the effects of the anticipation and perception of an agoraphobia-specific stimulus set. During fMRI, 48 agoraphobia-specific and 48 neutral pictures were randomly presented with and without anticipatory stimulus indicating the content of the subsequent pictures (Westphal paradigm).ResultsDuring the anticipation of agoraphobia-specific pictures, stronger activations were found in the bilateral ventral striatum and left insula in patients compared with controls. There were no group differences during the perception phase of agoraphobia-specific pictures.ConclusionsThis study revealed stronger region-specific activations in patients suffering from panic disorder with agoraphobia in anticipation of agoraphobia-specific stimuli. Patients seem to process these stimuli more intensively based on individual salience. Hyperactivation of the ventral striatum and insula when anticipating agoraphobia-specific situations might be a central neurofunctional correlate of agoraphobia. Knowledge about the neural correlates of anticipatory and perceptual processes regarding agoraphobic situations will help to optimize and evaluate treatments, such as exposure therapy, in patients with panic disorder and agoraphobia.


2015 ◽  
Vol 86 (11) ◽  
pp. e4.70-e4
Author(s):  
Hena Ahmad ◽  
Richard Roberts ◽  
Qadeer Arshad Arshad ◽  
Mitesh Patel ◽  
Adolfo Bronstein

Background and aimPatients with BVF report oscillopsia due to a defective vestibulo-ocular reflex causing retinal slip. No previous studies have probed visual cortical excitability using TMS and visual motion processing in these patients. We investigated the effects of visual motion adaptation on V1 cortical excitability in BVF patients and correlated this with psychophysical parameters.Methods12 BVF patients (7 males) aged 29–65 (mean=54.5) and 12 controls (6 males) aged 42–73 (mean=55) were recruited. Biphasic TMS pulses were applied at V1 and phosphene threshold (PT) was estimated. 3 measurement phases were (1) Stationary (2) Motion with optokinetic stimulation (OKS) Adaptation: OKS rightwards for 5 minutes 3) Post adaptation during viewing motion. All subjects completed questionnaires prior to the experiment. Results were analysed offline by calculating the probability of phosphene perception.ResultsBaseline phosphene thresholds were significantly higher in BVF patients (p=0.024) reflecting reduced visual cortical excitability. Lower oscillopsia scores correlated with reduced baseline V1 excitability (p=0.009).ConclusionsThis novel finding acts as a neurophysiological correlate for clinical observations of adaptive visual motion perception and is also correlated with psychophysical parameters. These results provide evidence for adaptive mechanisms leading to cortical plasticity following BVF.


2006 ◽  
Author(s):  
Arthur Aron ◽  
Helen Fisher ◽  
Greg Strong ◽  
Deb Mashek ◽  
HaiFang Li ◽  
...  

2013 ◽  
Author(s):  
Antonello Pellicano ◽  
Houpand Horoufchin ◽  
Harshal Patel ◽  
Iring Koch ◽  
Ferdinand Binkofski

2004 ◽  
Vol 31 (S 1) ◽  
Author(s):  
R Ilg ◽  
K Vogeley ◽  
T Goschke ◽  
A Bolte ◽  
NJ Shah ◽  
...  

Author(s):  
Gianluca Serafini ◽  
Maurizio Pompili ◽  
Andrea Romano ◽  
Denise Erbuto ◽  
Dorian A. Lamis ◽  
...  

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mirko Lehmann ◽  
Claudia Neumann ◽  
Sven Wasserthal ◽  
Johannes Schultz ◽  
Achilles Delis ◽  
...  

Abstract Only little research has been conducted on the pharmacological underpinnings of metacognition. Here, we tested the modulatory effects of a single intravenous dose (100 ng/ml) of the N-methyl-D-aspartate-glutamate-receptor antagonist ketamine, a compound known to induce altered states of consciousness, on metacognition and its neural correlates. Fifty-three young, healthy adults completed two study phases of an episodic memory task involving both encoding and retrieval in a double-blind, placebo-controlled fMRI study. Trial-by-trial confidence ratings were collected during retrieval. Effects on the subjective state of consciousness were assessed using the 5D-ASC questionnaire. Confirming that the drug elicited a psychedelic state, there were effects of ketamine on all 5D-ASC scales. Acute ketamine administration during retrieval had deleterious effects on metacognitive sensitivity (meta-d′) and led to larger metacognitive bias, with retrieval performance (d′) and reaction times remaining unaffected. However, there was no ketamine effect on metacognitive efficiency (meta-d′/d′). Measures of the BOLD signal revealed that ketamine compared to placebo elicited higher activation of posterior cortical brain areas, including superior and inferior parietal lobe, calcarine gyrus, and lingual gyrus, albeit not specific to metacognitive confidence ratings. Ketamine administered during encoding did not significantly affect performance or brain activation. Overall, our findings suggest that ketamine impacts metacognition, leading to significantly larger metacognitive bias and deterioration of metacognitive sensitivity as well as unspecific activation increases in posterior hot zone areas of the neural correlates of consciousness.


eNeuro ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. ENEURO.0284-18.2019 ◽  
Author(s):  
Takahiko Koike ◽  
Motofumi Sumiya ◽  
Eri Nakagawa ◽  
Shuntaro Okazaki ◽  
Norihiro Sadato

Sign in / Sign up

Export Citation Format

Share Document