scholarly journals Feature attention for binocular disparity in primate area MT depends on tuning strength

2015 ◽  
Vol 113 (5) ◽  
pp. 1545-1555 ◽  
Author(s):  
Douglas A. Ruff ◽  
Richard T. Born

Attending to a stimulus modulates the responses of sensory neurons that represent features of that stimulus, a phenomenon named “feature attention.” For example, attending to a stimulus containing upward motion enhances the responses of upward-preferring direction-selective neurons in the middle temporal area (MT) and suppresses the responses of downward-preferring neurons, even when the attended stimulus is outside of the spatial receptive fields of the recorded neurons (Treue S, Martinez-Trujillo JC. Nature 399: 575–579, 1999). This modulation renders the representation of sensory information across a neuronal population more selective for the features present in the attended stimulus (Martinez-Trujillo JC, Treue S. Curr Biol 14: 744–751, 2004). We hypothesized that if feature attention modulates neurons according to their tuning preferences, it should also be sensitive to their tuning strength, which is the magnitude of the difference in responses to preferred and null stimuli. We measured how the effects of feature attention on MT neurons in rhesus monkeys ( Macaca mulatta) depended on the relationship between features—in our case, direction of motion and binocular disparity—of the attended stimulus and a neuron's tuning for those features. We found that, as for direction, attention to stimuli containing binocular disparity cues modulated the responses of MT neurons and that the magnitude of the modulation depended on both a neuron's tuning preferences and its tuning strength. Our results suggest that modulation by feature attention may depend not just on which features a neuron represents but also on how well the neuron represents those features.

2005 ◽  
Vol 94 (6) ◽  
pp. 4156-4167 ◽  
Author(s):  
Daniel Zaksas ◽  
Tatiana Pasternak

Neurons in cortical area MT have localized receptive fields (RF) representing the contralateral hemifield and play an important role in processing visual motion. We recorded the activity of these neurons during a behavioral task in which two monkeys were required to discriminate and remember visual motion presented in the ipsilateral hemifield. During the task, the monkeys viewed two stimuli, sample and test, separated by a brief delay and reported whether they contained motion in the same or in opposite directions. Fifty to 70% of MT neurons were activated by the motion stimuli presented in the ipsilateral hemifield at locations far removed from their classical receptive fields. These responses were in the form of excitation or suppression and were delayed relative to conventional MT responses. Both excitatory and suppressive responses were direction selective, but the nature and the time course of their directionality differed from the conventional excitatory responses recorded with stimuli in the RF. Direction selectivity of the excitatory remote response was transient and early, whereas the suppressive response developed later and persisted after stimulus offset. The presence or absence of these unusual responses on error trials, as well as their magnitude, was affected by the behavioral significance of stimuli used in the task. We hypothesize that these responses represent top-down signals from brain region(s) accessing information about stimuli in the entire visual field and about the behavioral state of the animal. The recruitment of neurons in the opposite hemisphere during processing of behaviorally relevant visual signals reveals a mechanism by which sensory processing can be affected by cognitive task demands.


1992 ◽  
Vol 9 (3-4) ◽  
pp. 399-407 ◽  
Author(s):  
Jon H. Kaas ◽  
Leah A. Krubitzer

AbstractThe middle temporal visual area, MT, is one of three major targets of the primary visual cortex, area 17, in primates. We assessed the contribution of area 17 connections to the responsiveness of area MT neurons to visual stimuli by first mapping the representation of the visual hemifield in MT of anesthetized owl monkeys with microelectrodes, ablating an electrophysiologically mapped part of area 17, and then immediately remapping MT. Before the lesions, neurons at recording sites throughout MT responded vigorously to moving slits of light and other visual stimuli. In addition, the relationship of receptive fields to recording sites revealed a systematic representation of the contralateral visual hemifield in MT, as reported previously for owl monkeys and other primates. The immediate effect of removing part of the retinotopic map in area 17 by gentle aspiration was to selectively deactivate the corresponding part of the visuotopic map in MT. Lesions of dorsomedial area 17 representing central and paracentral vision of the lower visual quadrant deactivated neurons in caudomedial MT formerly having receptive fields in the central and paracentral lower visual quadrant. Most neurons at recording sites throughout other parts of MT had normal levels of responsiveness to visual stimuli, and receptive-field locations that closely matched those before the lesion. However, neurons at a few sites along the margin of the deactivated zone of cortex had receptive fields that were slightly displaced from the region of vision affected by the lesion into other parts of the visual field, suggesting some degree of plasticity in the visual hemifield representation in MT. Subsequent histological examination of cortex confirmed that the lesions were confined to area 17 and the recordings were in MT. The results indicate that the visually evoked activity of neurons in MT of owl monkeys is highly dependent on inputs relayed directly or indirectly from area 17.


2015 ◽  
Vol 114 (2) ◽  
pp. 869-878 ◽  
Author(s):  
Spencer C. Chen ◽  
John W. Morley ◽  
Samuel G. Solomon

The middle temporal (MT) area is a cortical area integral to the “where” pathway of primate visual processing, signaling the movement and position of objects in the visual world. The receptive field of a single MT neuron is sensitive to the direction of object motion but is too large to signal precise spatial position. Here, we asked if the activity of MT neurons could be combined to support the high spatial precision required in the where pathway. With the use of multielectrode arrays, we recorded simultaneously neural activity at 24–65 sites in area MT of anesthetized marmoset monkeys. We found that although individual receptive fields span more than 5° of the visual field, the combined population response can support fine spatial discriminations (<0.2°). This is because receptive fields at neighboring sites overlapped substantially, and changes in spatial position are therefore projected onto neural activity in a large ensemble of neurons. This fine spatial discrimination is supported primarily by neurons with receptive fields flanking the target locations. Population performance is degraded (by 13–22%) when correlations in neural activity are ignored, further reflecting the contribution of population neural interactions. Our results show that population signals can provide high spatial precision despite large receptive fields, allowing area MT to represent both the motion and the position of objects in the visual world.


2019 ◽  
Vol 2 ◽  
pp. 6 ◽  
Author(s):  
Shahab Bakhtiari ◽  
Christopher C. Pack

Smooth pursuit eye movements have frequently been used to model sensorimotor transformations in the brain. In particular, the initiation phase of pursuit can be understood as a transformation of a sensory estimate of target velocity into an eye rotation. Despite careful laboratory controls on the stimulus conditions, pursuit eye movements are frequently observed to exhibit considerable trial-to-trial variability. In theory, this variability can be caused by the variability in sensory representation of target motion, or by the variability in the transformation of sensory information to motor commands. Previous work has shown that neural variability in the middle temporal (MT) area is likely propagated to the oculomotor command, and there is evidence to suggest that the magnitude of this variability is sufficient to account for the variability of pursuit initiation. This line of reasoning presumes that the MT population is homogeneous with respect to its contribution to pursuit initiation.  At the same time, there is evidence that pursuit initiation is strongly linked to a subpopulation of MT neurons (those with strong surround suppression) that collectively generate less motor variability. To distinguish between these possibilities, we have combined human psychophysics, monkey electrophysiology, and computational modeling to examine how the pursuit system reads out the MT population during pursuit initiation. We find that the psychophysical data are best accounted for by a model that gives stronger weight to surround-suppressed MT neurons, suggesting that variability in the initiation of pursuit could arise from multiple sources along the sensorimotor transformation.


2005 ◽  
Vol 93 (3) ◽  
pp. 1809-1815 ◽  
Author(s):  
Christopher C. Pack ◽  
J. Nicholas Hunter ◽  
Richard T. Born

Visual neurons are often characterized in terms of their tuning for various stimulus properties, such as shape, color, and velocity. Generally, these tuning curves are further modulated by the overall intensity of the stimulus, such that increasing the contrast increases the firing rate, up to some maximum. In this paper, we describe the tuning of neurons in the middle temporal area (MT or V5) of macaque visual cortex for moving stimuli of varying contrast. We find that, for some MT neurons, tuning curves for stimulus direction, speed, and size are shaped in part by suppressive influences that are present at high stimulus contrast but weak or nonexistent at low contrast. For most neurons, the suppression is direction-specific and strongest for large, slow-moving stimuli. The surprising consequence of this phenomenon is that some MT neurons actually fire more vigorously to a large low-contrast stimulus than to one of high contrast. These results are consistent with recent perceptual observations, as well as with information-theoretic models, which hypothesize that the visual system seeks to reduce redundancy at high contrast while maintaining sensitivity at low contrast.


2001 ◽  
Vol 85 (1) ◽  
pp. 187-196 ◽  
Author(s):  
James W. Bisley ◽  
Daniel Zaksas ◽  
Tatiana Pasternak

We applied electrical stimulation to physiologically identified sites in macaque middle temporal area (MT) to examine its role in short-term storage of recently encoded information about stimulus motion. We used a behavioral task in which monkeys compared the directions of two moving random-dot stimuli, sample and test, separated by a 1.5-s delay. Four sample directions were used for each site, and the animals had to indicate whether the direction of motion in the sample was the same as or different to the direction of motion in the test. We found that the effect of stimulation of the same directional column in MT depended on the behavioral state of the animal. Although stimulation had strong effects when applied during the encoding and the storage components of the task, these effects were not equivalent. Stimulation applied during the presentation of the sample produced signals interpreted by the monkeys as directional motion. However, the same stimulation introduced during the period of storage no longer produced signals interpreted as unambiguous directional information. We conclude that the directional information used by the monkeys in the working memory task is likely to be provided by neurons in MT, and the use of this information appears to be dependent on the portion of the task during which stimulation was delivered. Finally, the disruptive effects of stimulation during the delay suggest that MT neurons not only participate in the encoding of visual motion information but also in its storage by either maintaining an active connection with the circuitry involved in storage or being an integral component of that circuitry.


1982 ◽  
Vol 48 (6) ◽  
pp. 1336-1346 ◽  
Author(s):  
F. B. Levitt ◽  
R. C. Van Sluyters

1. This paper describes the results of an experiment designed to examine the ability of cells in the kitten's visual cortex to regain functional binocular connections following exposure to a brief period of visual deprivation. 2. Normal 4-wk-old kittens were exposed to a total of 12 h of optically induced strabismus over a period of 2 days, and single-unit recordings made the following day indicated that the proportion of striate cortex cells with binocular receptive fields had decreased sharply as a result of this episode of strabismic vision. 3. When these kittens were revived and allowed to experience a recovery period of normal binocular vision lasting either 3 or 7 wk, cortical binocularity returned to a normal level. 4. Statistical analysis revealed that the difference in the level of binocularity observed before and after the period of binocular recovery was highly significant, and comparison of the results from kittens allowed only a 3-wk recovery period with those from kittens allowed a 7-wk period indicated that a similar level of recovery was obtained in each group. 5. Histological reconstruction of electrode penetrations indicated that the recovery of binocular receptive fields occurred uniformly across all cortical laminae. 6. These data are discussed in terms of the results from previous recovery experiments, the relationship between cortical binocularity and the ability to maintain binocular fixation, and the possibility that subliminal cortical input plays a role in the recovery of functional binocular cells.


1996 ◽  
Vol 13 (1) ◽  
pp. 87-100 ◽  
Author(s):  
K. H. Britten ◽  
W. T. Newsome ◽  
M. N. Shadlen ◽  
S. Celebrini ◽  
J. A. Movshon

AbstractWe have previously documented the exquisite motion sensitivity of neurons in extrastriate area MT by studying the relationship between their responses and the direction and strength of visual motion signals delivered to their receptive fields. These results suggested that MT neurons might provide the signals supporting behavioral choice in visual discrimination tasks. To approach this question from another direction, we have now studied the relationship between the discharge of MT neurons and behavioral choice, independently of the effects of visual stimulation. We found that trial-to-trial variability in neuronal signals was correlated with the choices the monkey made. Therefore, when a directionally selective neuron in area MT fires more vigorously, the monkey is more likely to make a decision in favor of the preferred direction of the cell. The magnitude of the relationship was modest, on average, but was highly significant across a sample of 299 cells from four monkeys. The relationship was present for all stimuli (including those without a net motion signal), and for all but the weakest responses. The relationship was reduced or eliminated when the demands of the task were changed so that the directional signal carried by the cell was less informative. The relationship was evident within 50 ms of response onset, and persisted throughout the stimulus presentation. On average, neurons that were more sensitive to weak motion signals had a stronger relationship to behavior than those that were less sensitive. These observations are consistent with the idea that neuronal signals in MT are used by the monkey to determine the direction of stimulus motion. The modest relationship between behavioral choice and the discharge of any one neuron, and the prevalence of the relationship across the population, make it likely that signals from many neurons are pooled to form the data on which behavioral choices are based.


2019 ◽  
Author(s):  
Alessandro La Chioma ◽  
Tobias Bonhoeffer ◽  
Mark Hübener

SummaryBinocular disparity, the difference between left and right eye images, is a powerful cue for depth perception. Many neurons in the visual cortex of higher mammals are sensitive to binocular disparity, with distinct disparity tuning properties across primary and higher visual areas. Mouse primary visual cortex (V1) has been shown to contain disparity-tuned neurons, but it is unknown how these signals are processed beyond V1. We find that disparity signals are prominent in higher areas of mouse visual cortex. Preferred disparities markedly differ among visual areas, with area RL encoding visual stimuli very close to the mouse. Moreover, disparity preference is systematically related to visual field elevation, such that neurons with receptive fields in the lower visual field are overall tuned to near disparities, likely reflecting an adaptation to natural image statistics. Our results reveal ecologically relevant areal specializations for binocular disparity processing across mouse visual cortex.


2018 ◽  
Vol 2 ◽  
pp. 6 ◽  
Author(s):  
Shahab Bakhtiari ◽  
Christopher C. Pack

Smooth pursuit eye movements have frequently been used to model sensorimotor transformations in the brain. In particular, the initiation phase of pursuit can be understood as a transformation of a sensory estimate of target velocity into an eye rotation. Despite careful laboratory controls on the stimulus conditions, pursuit eye movements are frequently observed to exhibit considerable trial-to-trial variability. In theory, this variability can be caused by the variability in sensory representation of target motion, or by the variability in the transformation of sensory information to motor commands. Previous work has shown that neural variability in the middle temporal (MT) area is likely propagated to the oculomotor command, and there is evidence to suggest that the magnitude of this variability is sufficient to account for the variability of pursuit initiation. This line of reasoning presumes that the MT population is homogeneous with respect to its contribution to pursuit initiation.  At the same time, there is evidence that pursuit initiation is strongly linked to a subpopulation of MT neurons (those with strong surround suppression) that collectively generate less motor variability. To distinguish between these possibilities, we have combined human psychophysics, monkey electrophysiology, and computational modeling to examine how the pursuit system reads out the MT population during pursuit initiation. We find that the psychophysical data are best accounted for by a model that gives stronger weight to surround-suppressed MT neurons, suggesting that variability in the initiation of pursuit could arise from multiple sources along the sensorimotor transformation.


Sign in / Sign up

Export Citation Format

Share Document