scholarly journals A review on screening tests for vestibular disorders

2019 ◽  
Vol 122 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Helen S. Cohen

Although many studies have reported on tests of the vestibular system a valid and reliable, evidence-based screening battery for easy clinical use remains elusive. Many screening tests attempt to assess the vestibulo-ocular reflex. Therefore, head shaking, the Dix-Hallpike maneuver, the supine roll test, and head impulse tests are discussed. Other tests address the spatial orientation functions of the vestibular system, such as the Bucket Test and the Fukuda Stepping test. Still, other tests are based on the known correlates with balance skills, both static and dynamic, such as tandem walking and the modern variation of the Romberg test, the modified Clinical Test of Sensory Interaction and Balance. This review provides a critical overview of the literature on some of these tests and their value for clinical use and in epidemiological studies.

2020 ◽  
Vol 5 (2) ◽  
pp. 23
Author(s):  
Felix Haxby ◽  
Mohammad Akrami ◽  
Reza Zamani

The vestibular system is located in the inner ear and is responsible for maintaining balance in humans. Bilateral vestibular dysfunction (BVD) is a disorder that adversely affects vestibular function. This results in symptoms such as postural imbalance and vertigo, increasing the incidence of falls and worsening quality of life. Current therapeutic options are often ineffective, with a focus on symptom management. Artificial stimulation of the vestibular system, via a vestibular prosthesis, is a technique being explored to restore vestibular function. This review systematically searched for literature that reported the effect of artificial vestibular stimulation on human behaviours related to balance, using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) technique. A total of 21 papers matched the inclusion criteria of the literature search conducted using the PubMed and Web of Science databases (February 2019). The populations for these studies included both healthy adults and patients with BVD. In every paper, artificial vestibular stimulation caused an improvement in certain behaviours related to balance, although the extent of the effect varied greatly. Various behaviours were measured such as the vestibulo-ocular reflex, postural sway and certain gait characteristics. Two classes of prosthesis were evaluated and both showed a significant improvement in at least one aspect of balance-related behaviour in every paper included. No adverse effects were reported for prostheses using noisy galvanic vestibular stimulation, however, prosthetic implantation sometimes caused hearing or vestibular loss. Significant heterogeneity in methodology, study population and disease aetiology were observed. The present study confirms the feasibility of vestibular implants in humans for restoring balance in controlled conditions, but more research needs to be conducted to determine their effects on balance in non-clinical settings.


2019 ◽  
Vol 11 (6) ◽  
pp. 479-485 ◽  
Author(s):  
Abdulaziz A. Alkathiry ◽  
Anthony P. Kontos ◽  
Joseph M. Furman ◽  
Susan L. Whitney ◽  
Eric R. Anson ◽  
...  

Background: Oculomotor impairments, dizziness, and imbalance are common after sports-related concussion (SRC) in adolescents and suggest a relationship between SRC and vestibular system dysfunction. However, it is not clear whether the source of these problems is attributable to the peripheral or central vestibular system. Hypothesis: The video Head Impulse Test (vHIT), which assesses peripheral vestibular function, will show differences in gain between adolescents with and without SRC. Furthermore, there will be an association between vHIT and clinical balance and vestibular/oculomotor testing. Study Design: Cross-sectional study. Level of Evidence: Level 2. Methods: Twenty-five symptomatic adolescents aged between 12 and 19 years with a recent (within 10 days) SRC and 22 healthy controls aged 13 to 20 years were assessed using the vHIT, Balance Error Scoring System (BESS), and Vestibular Ocular Motor Screening (VOMS) tools. The vestibulo-ocular reflex (VOR) gain was calculated independently for right and left head impulses. Independent-samples t tests or Mann-Whitney U tests for nonnormal distributions were used to compare concussed patients and controls on the measures. Spearman rank-order correlations were used to assess the association of vHIT with BESS and VOMS. Results: VOR gain in all adolescents with SRC was greater than 0.8, which is considered within normal limits. VOR gain and BESS scores were not significantly different between groups. Adolescents with SRC had significantly worse VOMS item scores than adolescents without SRC ( P < 0.001). There were no significant correlations among vHIT gain and VOMS or BESS. Conclusion: There was no evidence for dysfunction in the peripheral horizontal semicircular canal function at high rotation speeds (ie, vHIT) after SRC, and vHIT was unrelated to balance and vestibular/oculomotor symptoms and dysfunction. However, adolescents with SRC scored worse on vestibular and oculomotor testing than those without SRC. Vestibular dysfunction and symptoms after SRC may be centrally derived. Clinical Relevance: We do not recommend the assessment of head impulse function in adolescents with SRC unless more definitive signs of peripheral vestibular injury are present. We recommend using the VOMS to assess symptoms of suspected SRC injury in adolescents.


2003 ◽  
Vol 13 (2-3) ◽  
pp. 79-91
Author(s):  
Stefano Ramat ◽  
Roberto Schmid ◽  
Daniela Zambarbieri

Passive head rotation in darkness produces vestibular nystagmus, consisting of slow and quick phases. The vestibulo-ocular reflex produces the slow phases, in the compensatory direction, while the fast phases, in the same direction as head rotation, are of saccadic origin. We have investigated how the saccadic components of the ocular motor responses evoked by active head rotation in darkness are generated, assuming the only available sensory information is that provided by the vestibular system. We recorded the eye and head movements of nine normal subjects during active head rotation in darkness. Subjects were instructed to rotate their heads in a sinusoidal-like manner and to focus their attention on producing a smooth head rotation. We found that the desired eye position signal provided to the saccadic mechanism by the vestibular system may be modeled as a linear combination of head velocity and head displacement information. Here we present a mathematical model for the generation of both the slow and quick phases of vestibular nystagmus based on our findings. Simulations of this model accurately fit experimental data recorded from subjects.


1979 ◽  
Vol 87 (4) ◽  
pp. 453-458 ◽  
Author(s):  
Young S. Kim ◽  
Clifford G. Y. Lau ◽  
Herman A. Jenkins ◽  
Vicente Honrubia

The significance of Ewald's second law in the evaluation of the vestibulo-ocular reflex (VOR) was Investigated using the transfer characteristics of the vestibular and VOR systems in normal rabbits and rabbits in which one horizontal semicircular canal had been blocked. The transfer characteristics of the vestibular system were derived from the experimental results reported by Goldberg and Fernandez in 1971. A comparison was made of the properties of the bilateral and monolateral VOR systems with the predictions of a piecewise linear model of the vestibular system. The data received quantitatively collaborate the prediction of Ewald's second law as ft applies to the VOR responses.


2017 ◽  
Vol 117 (4) ◽  
pp. 1553-1568 ◽  
Author(s):  
Patrick P. Hübner ◽  
Serajul I. Khan ◽  
Americo A. Migliaccio

The α9-nicotinic acetylcholine receptor (α9-nAChR) subunit is expressed in the vestibular and auditory periphery, and its loss of function could compromise peripheral input from the predominantly cholinergic efferent vestibular system (EVS). A recent study has shown that α9-nAChRs play an important role in short-term vestibulo-ocular reflex (VOR) adaptation. We hypothesize that α9-nAChRs could also be important for other forms of vestibular plasticity, such as that needed for VOR recovery after vestibular organ injury. We measured the efficacy of VOR compensation in α9 knockout mice. These mice have deletion of most of the gene ( chrna9) encoding the nAChR and thereby lack α9-nAChRs. We measured the VOR gain (eye velocity/head velocity) in 20 α9 knockout mice and 16 cba129 controls. We measured the sinusoidal (0.2–10 Hz, 20–100°/s) and transient (1,500–6,000°/s2) VOR in complete darkness before (baseline) unilateral labyrinthectomy (UL) and then 1, 5, and 28 days after UL. On day 1 after UL, cba129 mice retained ~50% of their initial function for contralesional rotations, whereas α9 knockout mice only retained ~20%. After 28 days, α9 knockout mice had ~50% lower gain for both ipsilesional and contralesional rotations compared with cba129 mice. Cba129 mice regained ~75% of their baseline function for ipsilesional and ~90% for contralesional rotations. In contrast, α9 knockout mice only regained ~30% and ~50% function, respectively, leaving the VOR severely impaired for rotations in both directions. Our results show that loss of α9-nAChRs severely affects VOR compensation, suggesting that complimentary central and peripheral EVS-mediated adaptive mechanisms might be affected by this loss. NEW & NOTEWORTHY Loss of the α9-nicotinic acetylcholine receptor (α9-nAChR) subunit utilized by the efferent vestibular system (EVS) has been shown to significantly affect vestibulo-ocular reflex (VOR) adaptation. In our present study we have shown that loss of α9-nAChRs also affects VOR compensation, suggesting that the mammalian EVS plays an important role in vestibular plasticity, in general, and that VOR compensation is a more distributed process than previously thought, relying on both central and peripheral changes.


Author(s):  
Shirley H. Wray

covers deviations and disorders of horizontal gaze, which are so significantly linked to lesions of the pons that an emphasis on pontine signs is an important focus of this chapter. The pontine syndromes presented include a congenital case of horizontal gaze palsy and progressive scoliosis, and syndromes associated with adjacent tegmental structures, especially the paramedian reticular formation, the facial nerve, and the medial longitudinal fasciculus. A lesion of the medial longitudinal fasciculus causes internuclear ophthalmoplegia Examples are provided of internuclear ophthalmoplegia in childhood, combined unilateral conjugate gaze palsy and internuclear ophthalmoplegia, the one-and-a-half syndrome, and other variants. A case of bilateral horizontal gaze palsy permits discussion of the caloric test, one of the most widely used clinical test of the vestibulo-ocular reflex.


1984 ◽  
Vol 92 (1) ◽  
pp. 55-58 ◽  
Author(s):  
Hugh O. Barber

An important function of the vestibular system is to secure visual stabilization during head movement, and at low-frequency movements the optokinetic and pursuit systems collaborate to this end. Oscillopsia results when eye velocity fails to match head velocity. Simple bedside tests to identify oscillopsia and impaired cancellation of the vestibulo-ocular reflex (VOR) are described. Adaptive plasticity, directed to the goal of maintenance of foveation despite marked changes in the external (e.g., reversed visual surround) or internal (e.g., after labyrinthectomy) environment, is an important attribute of the vestibular system. The flocculus and some of its connections are essential to this function. Reduction of floccular efficiency, as in the elderly, might be an important cause of defective adaptation to a vestibular lesion, such as labyrinthectomy.


2019 ◽  
Author(s):  
Julie Jung ◽  
Su J. Kim ◽  
Sonia M. Pérez Arias ◽  
James G. McDaniel ◽  
Karen M. Warkentin

ABSTRACTThe widespread ability to alter hatching timing in response to environmental cues can serve as a defense against threats to eggs. Arboreal embryos of red-eyed treefrogs, Agalychnis callidryas, hatch up to 30% prematurely to escape predation. This escape-hatching response is cued by physical disturbance of eggs during attacks, including vibrations or motion, and thus depends critically on mechanosensory ability. Predator-induced hatching appears later in development than flooding-induced, hypoxia-cued hatching; thus, its onset is not constrained by the development of hatching ability. It may, instead, reflect the development of mechanosensor function. We hypothesize that vestibular mechanoreception mediates escape-hatching in snake attacks, and that the developmental period when hatching-competent embryos fail to flee from snakes reflects a sensory constraint. We assessed the ontogenetic congruence of escape-hatching responses and an indicator of vestibular function, the vestibulo-ocular reflex (VOR), in three ways. First, we measured VOR in two developmental series of embryos 3–7 days old to compare with the published ontogeny of escape success in attacks. Second, during the period of greatest variation in VOR and escape success, we compared hatching responses and VOR across sibships. Finally, in developmental series, we compared the response of individual embryos to a simulated attack cue with their VOR. The onset of VOR and hatching responses were largely concurrent at all three scales. Moreover, latency to hatch in simulated attacks decreased with increasing VOR. These results are consistent with a key role of the vestibular system in the escape-hatching response of A. callidryas embryos to attacks.Red-eyed treefrogs’ hatching responses to predator attacks, vibration playbacks, and egg-jiggling appear when vestibular function develops. Ear development may be a key limiting factor in the onset of mechanosensory-cued hatching.


Sign in / Sign up

Export Citation Format

Share Document