Neuronal Activity Throughout the Primate Mediodorsal Nucleus of the Thalamus During Oculomotor Delayed-Responses. I. Cue-, Delay-, and Response-Period Activity

2004 ◽  
Vol 92 (3) ◽  
pp. 1738-1755 ◽  
Author(s):  
Yumiko Watanabe ◽  
Shintaro Funahashi

The thalamic mediodorsal nucleus (MD) has strong reciprocal connections with the dorsolateral prefrontal cortex (DLPFC), suggesting that the MD, like the DLPFC, participates in higher cognitive functions. To examine MD's participation in cognitive functions, we analyzed the characteristics of task-related activities sampled homogeneously from the MD while two monkeys performed a spatial working memory task using oculomotor responses. Of 141 task-related MD neurons, 26, 53, and 84% exhibited cue-, delay-, and response-period activity, respectively. Most of cue- and response-period activities showed phasic excitation, and most of delay-period activity showed tonic sustained activation. Among neurons with response-period activity, 74% exhibited presaccadic activity. Most cue-period, delay-period, and presaccadic activities were directional, whereas most postsaccadic activity was omni-directional. A significant contralateral bias in the best directions was present in cue-period and presaccadic activity. However, such bias was not present in delay-period activity, although most neurons had a best direction toward the contralateral visual field. We compared these characteristics with those observed in DLPFC neurons. Response-period activity was more frequently observed in the MD (84%) than in the DLPFC (56%). The directional selectivity and bias of task-related activities and the ratios of pre- and postsaccadic activities were different between MD and DLPFC. These results indicate that the MD participates in higher cognitive functions such as spatial working memory. However, the manner in which these two structures participate in these processes differs, in that the MD participates more in motor control aspects compared with the DLPFC.

2002 ◽  
Vol 87 (1) ◽  
pp. 567-588 ◽  
Author(s):  
Kazuyoshi Takeda ◽  
Shintaro Funahashi

To examine what kind of information task-related activity encodes during spatial working memory processes, we analyzed single-neuron activity in the prefrontal cortex while two monkeys performed two different oculomotor delayed-response (ODR) tasks. In the standard ODR task, monkeys were required to make a saccade to the cue location after a 3-s delay, whereas in the rotatory ODR (R-ODR) task, they were required to make a saccade 90° clockwise from the cue location after the 3-s delay. By comparing the same task-related activities in these two tasks, we could determine whether such activities encoded the location of the visual cue or the direction of the saccade. One hundred twenty one neurons exhibited task-related activity in relation to at least one task event in both tasks. Among them, 41 neurons exhibited directional cue-period activity, most of which encoded the location of the visual cue. Among 56 neurons with directional delay-period activity, 86% encoded the location of the visual cue, whereas 13% encoded the direction of the saccade. Among 57 neurons with directional response-period activity, 58% encoded the direction of the saccade, whereas 35% encoded the location of the visual cue. Most neurons whose response-period activity encoded the location of the visual cue also exhibited directional delay-period activity that encoded the location of the visual cue as well. The best directions of these two activities were identical, and most of these response-period activities were postsaccadic. Therefore this postsaccadic activity can be considered a signal to terminate unnecessary delay-period activity. Population histograms encoding the location of the visual cue showed tonic sustained activation during the delay period. However, population histograms encoding the direction of the saccade showed a gradual increase in activation during the delay period. These results indicate that the transformation from visual input to motor output occurs in the dorsolateral prefrontal cortex. The analysis using population histograms suggests that this transformation occurs gradually during the delay period.


2017 ◽  
Vol 117 (6) ◽  
pp. 2269-2281 ◽  
Author(s):  
R. O. Konecky ◽  
M. A. Smith ◽  
C. R. Olson

To explore the brain mechanisms underlying multi-item working memory, we monitored the activity of neurons in the dorsolateral prefrontal cortex while macaque monkeys performed spatial and chromatic versions of a Sternberg working-memory task. Each trial required holding three sequentially presented samples in working memory so as to identify a subsequent probe matching one of them. The monkeys were able to recall all three samples at levels well above chance, exhibiting modest load and recency effects. Prefrontal neurons signaled the identity of each sample during the delay period immediately following its presentation. However, as each new sample was presented, the representation of antecedent samples became weak and shifted to an anomalous code. A linear classifier operating on the basis of population activity during the final delay period was able to perform at approximately the level of the monkeys on trials requiring recall of the third sample but showed a falloff in performance on trials requiring recall of the first or second sample much steeper than observed in the monkeys. We conclude that delay-period activity in the prefrontal cortex robustly represented only the most recent item. The monkeys apparently based performance of this classic working-memory task on some storage mechanism in addition to the prefrontal delay-period firing rate. Possibilities include delay-period activity in areas outside the prefrontal cortex and changes within the prefrontal cortex not manifest at the level of the firing rate. NEW & NOTEWORTHY It has long been thought that items held in working memory are encoded by delay-period activity in the dorsolateral prefrontal cortex. Here we describe evidence contrary to that view. In monkeys performing a serial multi-item working memory task, dorsolateral prefrontal neurons encode almost exclusively the identity of the sample presented most recently. Information about earlier samples must be encoded outside the prefrontal cortex or represented within the prefrontal cortex in a cryptic code.


2009 ◽  
Vol 21 (5) ◽  
pp. 1023-1038 ◽  
Author(s):  
Kevin Johnston ◽  
Stefan Everling

Visuospatial working memory is one of the most extensively investigated functions of the dorsolateral prefrontal cortex (DLPFC). Theories of prefrontal cortical function have suggested that this area exerts cognitive control by modulating the activity of structures to which it is connected. Here, we used the oculomotor system as a model in which to characterize the output signals sent from the DLPFC to a target structure during a classical spatial working memory task. We recorded the activity of identified DLPFC–superior colliculus (SC) projection neurons while monkeys performed a memory-guided saccade task in which they were required to generate saccades toward remembered stimulus locations. DLPFC neurons sent signals related to all aspects of the task to the SC, some of which were spatially tuned. These data provide the first direct evidence that the DLPFC sends task-relevant information to the SC during a spatial working memory task, and further support a role for the DLPFC in the direct modulation of other brain areas.


2004 ◽  
Vol 92 (3) ◽  
pp. 1756-1769 ◽  
Author(s):  
Yumiko Watanabe ◽  
Shintaro Funahashi

We collected single-neuron activity from the mediodorsal (MD) nucleus of the thalamus, examined the information that was represented by task-related activity during performance of a spatial working memory task, and compared the present results with those obtained in the dorsolateral prefrontal cortex (DLPFC). We used two oculomotor delayed-response (ODR) tasks. In the ordinary ODR task, monkeys were required to make a memory-guided saccade to the location where a visual cue had been presented 3 s previously, whereas in the rotatory ODR task, they were required to make a memory-guided saccade 90° clockwise from the cue direction. By comparing the best directions of the same task-related activity between the two tasks, we could determine whether this activity represented the cue location or the saccade direction. All cue-period activity represented the cue location. In contrast, 56% of delay-period activity represented the cue location and 41% represented the saccade direction. Almost all response-period activity represented the saccade direction. These results indicate that task-related MD activity represents either visual or motor information, suggesting that the MD participates in sensory-to-motor information processing. However, a greater proportion of delay- and response-period activities represented the saccade direction in the MD than in the DLPFC, indicating that more MD neurons participate in prospective information processing than DLPFC neurons. These results suggest that although functional interactions between the MD and DLPFC are crucial to cognitive functions such as working memory, there is a difference in how the MD and DLPFC participate in these functions.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Hessameddin Akhlaghpour ◽  
Joost Wiskerke ◽  
Jung Yoon Choi ◽  
Joshua P Taliaferro ◽  
Jennifer Au ◽  
...  

Several lines of evidence suggest that the striatum has an important role in spatial working memory. The neural dynamics in the striatum have been described in tasks with short delay periods (1–4 s), but remain largely uncharacterized for tasks with longer delay periods. We collected and analyzed single unit recordings from the dorsomedial striatum of rats performing a spatial working memory task with delays up to 10 s. We found that neurons were activated sequentially, with the sequences spanning the entire delay period. Surprisingly, this sequential activity was dissociated from stimulus encoding activity, which was present in the same neurons, but preferentially appeared towards the onset of the delay period. These observations contrast with descriptions of sequential dynamics during similar tasks in other brains areas, and clarify the contribution of the striatum to spatial working memory.


Author(s):  
Francesco Panico ◽  
Stefania De Marco ◽  
Laura Sagliano ◽  
Francesca D’Olimpio ◽  
Dario Grossi ◽  
...  

AbstractThe Corsi Block-Tapping test (CBT) is a measure of spatial working memory (WM) in clinical practice, requiring an examinee to reproduce sequences of cubes tapped by an examiner. CBT implies complementary behaviors in the examiners and the examinees, as they have to attend a precise turn taking. Previous studies demonstrated that the Prefrontal Cortex (PFC) is activated during CBT, but scarce evidence is available on the neural correlates of CBT in the real setting. We assessed PFC activity in dyads of examiner–examinee participants while completing the real version of CBT, during conditions of increasing and exceeding workload. This procedure allowed to investigate whether brain activity in the dyads is coordinated. Results in the examinees showed that PFC activity was higher when the workload approached or reached participants’ spatial WM span, and lower during workload conditions that were largely below or above their span. Interestingly, findings in the examiners paralleled the ones in the examinees, as examiners’ brain activity increased and decreased in a similar way as the examinees’ one. In the examiners, higher left-hemisphere activity was observed suggesting the likely activation of non-spatial WM processes. Data support a bell-shaped relationship between cognitive load and brain activity, and provide original insights on the cognitive processes activated in the examiner during CBT.


Sign in / Sign up

Export Citation Format

Share Document