Dopamine Modulation of Honey Bee (Apis mellifera) Antennal-Lobe Neurons

2006 ◽  
Vol 95 (2) ◽  
pp. 1147-1157 ◽  
Author(s):  
Christopher G. Perk ◽  
Alison R. Mercer

Primary olfactory centers [antennal lobes (ALs)] of the honey bee brain are invaded by dopamine (DA)-immunoreactive neurons early in development (pupal stage 3), immediately before a period of rapid growth and compartmentalization of the AL neuropil. Here we examine the modulatory actions of DA on honey bee AL neurons during this period. Voltage-clamp recordings in whole cell configuration were used to determine the effects of DA on ionic currents in AL neurons in vitro from pupal bees at stages 4–6 of the nine stages of metamorphic adult development. In ∼45% of the neurons tested, DA (5–50 × 10−5 M) reduced the amplitude of outward currents in the cells. In addition to a slowly activating, sustained outward current, DA reduced the amplitude of a rapidly activating, transient outward conductance in some cells. Both of the currents modulated by DA could be abolished by the removal of Ca2+ from the external medium or by treatment of cells with charybdotoxin (2 × 10−8 M), a blocker of Ca2+-dependent K+ currents in the cells. Ca2+ currents were not affected by DA, nor were A-type K+ currents ( IA). Results suggest that the delayed rectifier-like current ( IKV) also remains intact in the presence of DA. Taken together, our data indicate that Ca2+-dependent K+ currents are targets of DA modulation in honey bee AL neurons. This study lends support to the hypothesis that DA plays a role in the developing brain of the bee.

1995 ◽  
Vol 198 (3) ◽  
pp. 613-627 ◽  
Author(s):  
A R Mercer ◽  
J H Hayashi ◽  
J G Hildebrand

The modulatory effects of 5-hydroxytryptamine (5-HT or serotonin) on voltage-gated currents in central olfactory neurones of the moth Manduca sexta have been examined in vitro using whole-cell patch-clamp recording techniques. Central olfactory neurones were dissociated from the antennal lobes of animals at stage 5 of the 18 stages of metamorphic adult development. The modulatory actions of 5-HT on voltage-activated ionic currents were examined in a subset of morphologically identifiable antennal lobe neurones maintained for 2 weeks in primary cell culture. 5-HT caused reversible reduction of both a rapidly activating A-type K+ current and a relatively slowly activating K+ current resembling a delayed rectifier-type conductance. 5-HT also reduced the magnitude of voltage-activated Ca2+ influx in these cells. The functional significance of 5-HT-modulation of central neurones is discussed.


1990 ◽  
Vol 63 (4) ◽  
pp. 725-737 ◽  
Author(s):  
S. K. Florio ◽  
C. D. Westbrook ◽  
M. R. Vasko ◽  
R. J. Bauer ◽  
J. L. Kenyon

1. We used the patch-clamp technique to study voltage-activated transient potassium currents in freshly dispersed and cultured chick dorsal root ganglion (DRG) cells. Whole-cell and cell-attached patch currents were recorded under conditions appropriate for recording potassium currents. 2. In whole-cell experiments, 100-ms depolarizations from normal resting potentials (-50 to -70 mV) elicited sustained outward currents that inactivated over a time scale of seconds. We attribute this behavior to a component of delayed rectifier current. After conditioning hyperpolarizations to potentials negative to -80 mV, depolarizations elicited transient outward current components that inactivated with time constants in the range of 8-26 ms. We attribute this behavior to a transient outward current component. 3. Conditioning hyperpolarizations increased the rate of activation of the net outward current implying that the removal of inactivation of the transient outward current allows it to contribute to early outward current during depolarizations from negative potentials. 4. Transient current was more prominent on the day the cells were dispersed and decreased with time in culture. 5. In cell-attached patches, single channels mediating outward currents were observed that were inactive at resting potentials but were active transiently during depolarizations to potentials positive to -30 mV. The probability of channels being open increased rapidly (peaking within approximately 6 ms) and then declined with a time constant in the range of 13-30 ms. With sodium as the main extracellular cation, single-channel conductances ranged from 18 to 32 pS. With potassium as the main extracellular cation, the single-channel conductance was approximately 43 pS, and the channel current reversed near 0 mV, as expected for a potassium current. 6. We conclude that the transient potassium channels mediate the component of transient outward current seen in the whole-cell experiments. This current is a relatively small component of the net current during depolarizations from normal resting potentials, but it can contribute significant outward current early in depolarizations from hyperpolarized potentials.


2004 ◽  
Vol 92 (4) ◽  
pp. 2589-2603 ◽  
Author(s):  
Daniel G. Wüstenberg ◽  
Milena Boytcheva ◽  
Bernd Grünewald ◽  
John H. Byrne ◽  
Randolf Menzel ◽  
...  

The mushroom body of the insect brain is an important locus for olfactory information processing and associative learning. The present study investigated the biophysical properties of Kenyon cells, which form the mushroom body. Current- and voltage-clamp analyses were performed on cultured Kenyon cells from honeybees. Current-clamp analyses indicated that Kenyon cells did not spike spontaneously in vitro. However, spikes could be elicited by current injection in approximately 85% of the cells. Of the cells that produced spikes during a 1-s depolarizing current pulse, approximately 60% exhibited repetitive spiking, whereas the remaining approximately 40% fired a single spike. Cells that spiked repetitively showed little frequency adaptation. However, spikes consistently became broader and smaller during repetitive activity. Voltage-clamp analyses characterized a fast transient Na+ current ( INa), a delayed rectifier K+ current ( IK,V), and a fast transient K+ current ( IK,A). Using the neurosimulator SNNAP, a Hodgkin–Huxley-type model was developed and used to investigate the roles of the different currents during spiking. The model led to the prediction of a slow transient outward current ( IK,ST) that was subsequently identified by reevaluating the voltage-clamp data. Simulations indicated that the primary currents that underlie spiking are INa and IK,V, whereas IK,A and IK,ST primarily determined the responsiveness of the model to stimuli such as constant or oscillatory injections of current.


1998 ◽  
Vol 275 (1) ◽  
pp. L145-L154 ◽  
Author(s):  
C. Vandier ◽  
M. Delpech ◽  
P. Bonnet

Single smooth muscle cells of rabbit intrapulmonary artery were voltage clamped using the perforated-patch configuration of the patch-clamp technique. We observed spontaneous transient outward currents (STOCs) and a steady-state outward current. Because STOCs were tetraethylammonium sensitive and activated by Ca2+ influx, they were believed to represent activation of Ca2+-activated K+ channels. The steady-state outward current, which was sensitive to 4-aminopyridine, was the delayed rectifier K+ current. In cells voltage clamped at 0 mV, we found that STOCs were not randomly distributed in amplitude but were composed of multiples of 1.57 ± 0.56 pA/pF. The mean frequency of STOCs was 5.51 ± 3.49 Hz. Ryanodine (10 μM), caffeine (5 mM), thapsigargin (200 nM), and hypoxia [Formula: see text] = 10 mmHg) decreased STOCs. The effect of hypoxia on STOCs was partially reversible only if the experiment was conducted in the presence of thapsigargin. Hypoxia and thapsigargin decrease steady-state outward current. Thapsigargin and removal of external Ca2+abolished the effect of hypoxia, suggesting that hypoxia decreases steady-state outward current by a Ca2+-dependent mechanism.


2007 ◽  
Vol 97 (6) ◽  
pp. 3986-3996 ◽  
Author(s):  
Aryn H. Gittis ◽  
Sascha du Lac

Neural circuits are composed of diverse cell types, the firing properties of which reflect their intrinsic ionic currents. GABAergic and non-GABAergic neurons in the medial vestibular nuclei, identified in GIN and YFP-16 lines of transgenic mice, respectively, exhibit different firing properties in brain slices. The intrinsic ionic currents of these cell types were investigated in acutely dissociated neurons from 3- to 4-wk-old mice, where differences in spontaneous firing and action potential parameters observed in slice preparations are preserved. Both GIN and YFP-16 neurons express a combination of four major outward currents: Ca2+-dependent K+ currents ( IKCa), 1 mM TEA-sensitive delayed rectifier K+ currents ( I1TEA), 10 mM TEA-sensitive delayed rectifier K+ currents ( I10TEA), and A-type K+ currents ( IA). The balance of these currents varied across cells, with GIN neurons tending to express proportionately more IKCa and IA, and YFP-16 neurons tending to express proportionately more I1TEA and I10TEA. Correlations in charge densities suggested that several currents were coregulated. Variations in the kinetics and density of I1TEA could account for differences in repolarization rates observed both within and between cell types. These data indicate that diversity in the firing properties of GABAergic and non-GABAergic vestibular nucleus neurons arises from graded differences in the balance and kinetics of ionic currents.


1982 ◽  
Vol 79 (2) ◽  
pp. 187-209 ◽  
Author(s):  
J E Lisman ◽  
G L Fain ◽  
P M O'Day

The voltage-dependent conductances of Limulus ventral photoreceptors have been investigated using a voltage-clamp technique. Depolarization in the dark induces inward and outward currents. The inward current is reduced by removing Na+ or Ca2+ and is abolished by removing both ions. These results suggest that both Na+ and Ca2+ carry voltage-dependent inward current. Inward current is insensitive to tetrodotoxin but is blocked by external Ni2+. The outward current has a large transient component that is followed by a smaller maintained component. Intracellular tetraethylammonium preferentially reduces the maintained component, and extracellular 4-amino pyridine preferentially reduces the transient component. Neither component is strongly affected by removal of extracellular Ca2+ or by intracellular injection of EGTA. It is concluded that the photoreceptors contain at least three separate voltage-dependent conductances: 1) a conductance giving rise to inward currents; 2) a delayed rectifier giving rise to maintained outward K+ current; and 3) a rapidly inactivating K+ conductance similar to the A current of molluscan neurons.


1989 ◽  
Vol 257 (3) ◽  
pp. C461-C469 ◽  
Author(s):  
W. C. Cole ◽  
K. M. Sanders

Outward currents of colonic smooth muscle cells were characterized by the whole cell voltage-clamp method. Four components of outward current were identified: a time-independent and three time-dependent components. The time-dependent current showed strong outward rectification positive to -25 mV and was blocked by tetraethylammonium. The time-dependent components were separated on the basis of their time courses, voltage dependence, and pharmacological sensitivities. They are as follows. 1) A Ca2+-activated K current sensitive to external Ca2+ and Ca2+ influx was blocked by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (0.1 X 10(-3) M) and nifedipine (1 X 10(-6) and was increased by elevated Ca2+ (8 X 10(-6) M) and BAY K 8644 (1 X 10(-6) M). 2) A "delayed rectifier" current was observed that decayed slowly with time and showed no voltage-dependent inactivation. 3) Spontaneous transient outward currents that were blocked by ryanodine (2 X 10(-6) M) were also recorded. The possible contributions of these currents to the electrical activity of colonic muscle cells in situ are discussed. Ca2+-activated K current may contribute a significant conductance to the repolarizing phase of electrical slow waves.


2006 ◽  
Vol 95 (5) ◽  
pp. 3060-3072 ◽  
Author(s):  
K. T. Blackwell

In Hermissenda crassicornis, the memory of light associated with turbulence is stored as changes in intrinsic and synaptic currents in both type A and type B photoreceptors. These photoreceptor types exhibit qualitatively different responses to light and current injection, and these differences shape the spatiotemporal firing patterns that control behavior. Thus the objective of the study was to identify the mechanisms underlying these differences. The approach was to develop a type B model that reproduced characteristics of type B photoreceptors recorded in vitro, and then to create a type A model by modifying a select number of ionic currents. Comparison of type A models with characteristics of type A photoreceptors recorded in vitro revealed that type A and type B photoreceptors have five main differences, three that have been characterized experimentally and two that constitute hypotheses to be tested with experiments in the future. The three differences between type A and type B photoreceptors previously characterized include the inward rectifier current, the fast sodium current, and conductance of calcium-dependent and transient potassium channels. Two additional changes were required to produce a type A photoreceptor model. The very fast firing frequency observed during the first second after light onset required a faster time constant of activation of the delayed rectifier. The fast spike adaptation required a fast, noninactivating calcium-dependent potassium current. Because these differences between type A and type B photoreceptors have not been confirmed in comparative experiments, they constitute hypotheses to be tested with future experiments.


1995 ◽  
Vol 198 (7) ◽  
pp. 1483-1492 ◽  
Author(s):  
A Chrachri

Ionic currents from freshly isolated and identified swimmeret motor neurones were characterized using a whole-cell patch-clamp technique. Two outward currents could be distinguished. A transient outward current was elicited by delivering depolarizing voltage steps from a holding potential of -80 mV. This current was inactivated by holding the cells at a potential of -40 mV and was also blocked completely by 4-aminopyridine. A second current had a sustained time course and continued to be activated at a holding potential of -40 mV. This current was partially blocked by tetraethylammonium. These outward currents resembled two previously described potassium currents: the K+ A-current and the delayed K+ rectifier current respectively. Two inward currents were also detected. A fast transient current was blocked by tetrodotoxin and inactivated at holding potential of -40 mV, suggesting that this is an inward Na+ current. A second inward current had a sustained time course and was affected neither by tetrodotoxin nor by holding the cell at a potential of -40 mV. This current was substantially enhanced by the addition of Ba2+ to the bath or when equimolar Ba2+ replaced Ca2+ as the charge carrier. Furthermore, this current was significantly suppressed by nifedipine. All these points suggest that this is an L-type Ca2+ current. Bath application of nifedipine into an isolated swimmeret preparation affected both the frequency of the swimmeret rhythm and the duration of power-stroke activity, suggesting an important role for the inward Ca2+ current in maintaining a regular swimmeret rhythmic activity in crayfish.


2010 ◽  
Vol 299 (5) ◽  
pp. C1180-C1194 ◽  
Author(s):  
R. J. Large ◽  
M. A. Hollywood ◽  
G. P. Sergeant ◽  
K. D. Thornbury ◽  
S. Bourke ◽  
...  

Hyaluronan, a joint lubricant and regulator of synovial fluid content, is secreted by fibroblast-like synoviocytes lining the joint cavity, and secretion is greatly stimulated by Ca2+-dependent protein kinase C. This study aimed to define synoviocyte membrane currents and channels that may influence synoviocyte Ca2+ dynamics. Resting membrane potential ranged from −30 mV to −66 mV (mean −45 ± 8.60 mV, n = 40). Input resistance ranged from 0.54 GΩ to 2.6 GΩ (mean 1.28 ± 0.57 GΩ; ν = 33). Cell capacitance averaged 97.97 ± 5.93 pF. Voltage clamp using Cs+ pipette solution yielded a transient inward current that disappeared in Ca2+-free solutions and was blocked by 1 μM nifedipine, indicating an L-type calcium current. The current was increased fourfold by the calcium channel activator FPL 64176 (300 nM). Using K+ pipette solution, depolarizing steps positive to −40 mV evoked an outward current that showed kinetics and voltage dependence of activation and inactivation typical of the delayed rectifier potassium current. This was blocked by the nonspecific delayed rectifier blocker 4-aminopyridine. The synoviocytes expressed mRNA for four Kv1 subtypes (Kv1.1, Kv1.4, Kv1.5, and Kv1.6). Correolide (1 μM), margatoxin (100 nM), and α-dendrotoxin block these Kv1 subtypes, and all of these drugs significantly reduced synoviocyte outward current. The current was blocked most effectively by 50 nM κ-dendrotoxin, which is specific for channels containing a Kv1.1 subunit, indicating that Kv1.1 is critical, either as a homomultimeric channel or as a component of a heteromultimeric Kv1 channel. When 50 nM κ-dendrotoxin was added to current-clamped synoviocytes, the cells depolarized by >20 mV and this was accompanied by an increase in intracellular calcium concentration. Similarly, depolarization of the cells with high external potassium solution caused an increase in intracellular calcium, and this effect was greatly reduced by 1 μM nifedipine. In conclusion, fibroblast-like synoviocytes cultured from the inner synovium of the rabbit exhibit voltage-dependent inward and outward currents, including Ca2+ currents. They thus express ion channels regulating membrane Ca2+ permeability and electrochemical gradient. Since Ca2+-dependent kinases are major regulators of synovial hyaluronan secretion, the synoviocyte ion channels are likely to be important in the regulation of hyaluronan secretion.


Sign in / Sign up

Export Citation Format

Share Document