scholarly journals Quantal Encoding of Information in a Retinal Ganglion Cell

2005 ◽  
Vol 94 (2) ◽  
pp. 1048-1056 ◽  
Author(s):  
Michael A. Freed

A retinal ganglion cell receives information about a white-noise stimulus as a flickering pattern of glutamate quanta. The ganglion cell reencodes this information as brief bursts of one to six spikes separated by quiescent periods. When the stimulus is repeated, the number of spikes in a burst is highly reproducible (variance < mean) and spike timing is precise to within 10 ms, leading to an estimate that each spike encodes about 2 bits. To understand how the ganglion cell reencodes information, we studied the quantal patterns by repeating a white-noise stimulus and recording excitatory currents from a voltage-clamped, brisk-sustained ganglion cell. Quanta occurred in synchronous bursts of 3 to 65; the resulting postsynaptic currents summed to form excitatory postsynaptic currents (EPSCs). The number of quanta in an EPSC was only moderately reproducible (variance = mean), quantal timing was precise to within 14 ms, and each quantum encoded 0.1–0.4 bit. In conclusion, compared to a spike, a quantum has similar temporal precision, but is less reproducible and encodes less information. Summing multiple quanta into discrete EPSCs improves the reproducibility of the overall quantal pattern and contributes to the reproducibility of the spike train.

2018 ◽  
Author(s):  
Daniel Rathbun ◽  
Nima Ghorbani ◽  
Hamed Shabani ◽  
Eberhart Zrenner ◽  
Zohreh Hosseinzadeh

Bionic retinal implants are gaining acceptance in the treatment of blindness from degenerative diseases including retinitis pigmentosa and macular degeneration. A current obstacle to the improved performance of such implants is the difficulty of comparing the results of disparate experiments. Another obstacle is the current difficulty in selectively activating the many different retinal ganglion cell types that are used as separate pathways for visual information to the brain. To address these obstacles, we propose a modelling framework based on white noise stimulation and reverse correlation.In this perspective, we first outline early developments in visual retinal physiology leading up to the implementation of white noise stimuli and spike-triggered averaging. We then review recent efforts to adapt the white noise method for electrical stimulation of the retina and some of the nuances of this approach. Based on such white noise methods, we describe a modelling framework whereby the effect of any arbitrary electrical stimulus on a ganglion cell’s neural code can be better understood. This framework should additionally disentangle the effects of stimulation on photoreceptor, bipolar cell and retinal ganglion cell – ultimately supporting selective stimulation of specific ganglion cell types for a more nuanced bionic retinal implant. Finally, we point to upcoming considerations in this rapidly developing domain of research.


2007 ◽  
Vol 24 (1) ◽  
pp. 271-274 ◽  
Author(s):  
Wang Guang-Li ◽  
Huang Shi-Yong ◽  
Zhang Ying-Ying ◽  
Liang Pei-Ji

2007 ◽  
Vol 98 (2) ◽  
pp. 911-919 ◽  
Author(s):  
Daniel L. Rathbun ◽  
Henry J. Alitto ◽  
Theodore G. Weyand ◽  
W. Martin Usrey

The interspike interval (ISI) preceding a retinal spike has a strong influence on whether retinal spikes will drive postsynaptic responses in the lateral geniculate nucleus (LGN). This ISI-based filtering of retinal spikes could, in principle, be used as a mechanism for processing visual information en route from retina to cortex; however, this form of processing has not been previously explored. Using a white noise stimulus and reverse correlation analysis, we compared the receptive fields associated with retinal spikes over a range of ISIs (0–120 ms). Results showed that, although the location and sign of retinal ganglion cell receptive fields are invariant to ISI, the size and amplitude of receptive fields vary with ISI. These results support the notion that ISI-based filtering of retinal spikes can serve as a mechanism for shaping receptive fields.


2007 ◽  
Vol 26 (2) ◽  
pp. 367-380 ◽  
Author(s):  
Günther M. Zeck ◽  
Richard H. Masland

2007 ◽  
Vol 30 (4) ◽  
pp. 77
Author(s):  
Y. Y. Chen ◽  
C. L. Hehr ◽  
K. Atkinson-Leadbeater ◽  
J. C. Hocking ◽  
S. McFarlane

Background: The growth cone interprets cues in its environment in order to reach its target. We want to identify molecules that regulate growth cone behaviour in the developing embryo. We investigated the role of A disintegrin and metalloproteinase 10 (ADAM10) in axon guidance in the developing visual system of African frog, Xenopus laevis. Methods: We first examined the expression patterns of adam10 mRNA by in situ hybridization. We then exposed the developing optic tract to an ADAM10 inhibitor, GI254023X, in vivo. Lastly, we inhibited ADAM10 function in diencephalic neuroepithelial cells (through which retinal ganglion cell (RGC) axons extend) or RGCs by electroporating or transfecting an ADAM10 dominant negative (dn-adam10). Results: We show that adam10 mRNA is expressed in the dorsal neuroepithelium over the time RGC axons extend towards their target, the optic tectum. Second, pharmacological inhibition of ADAM10 in an in vivo exposed brain preparation causes the failure of RGC axons to recognize their target at low concentrations (0.5, 1 μM), and the failure of the axons to make a caudal turn in the mid-diencephalon at higher concentration (5 μM). Thus, ADAM10 function is required for RGC axon guidance at two key guidance decisions. Finally, molecular inhibition of ADAM10 function by electroporating dn-adam10 in the brain neuroepithelium causes defects in RGC axon target recognition (57%) and/or defects in caudal turn (12%), as seen with the pharmacological inhibitor. In contrast, molecular inhibition of ADAM10 within the RGC axons has no effect. Conclusions: These data argue strongly that ADAM10 acts cell non-autonomously within the neuroepithelium to regulate the guidance of RGC axons. This study shows for the first time that a metalloproteinase acts in a cell non-autonomous fashion to direct vertebrate axon growth. It will provide important insights into candidate molecules that could be used to reform nerve connections if destroyed because of injury or disease. References Hattori M, Osterfield M, Flanagan JG. Regulated cleavage of a contact-mediated axon repellent. Science 2000; 289(5483):1360-5. Janes PW, Saha N, Barton WA, Kolev MV, Wimmer-Kleikamp SH, Nievergall E, Blobel CP, Himanen JP, Lackmann M, Nikolov DB. Adam meets Eph: an ADAM substrate recognition module acts as a molecular switch for ephrin cleavage in trans. Cell 2005; 123(2):291-304. Pan D, Rubin GM. Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 1997; 90(2):271-80.


Sign in / Sign up

Export Citation Format

Share Document