Cat parastriate cortex: a primary or secondary visual area

1975 ◽  
Vol 38 (5) ◽  
pp. 1099-1113 ◽  
Author(s):  
F. Tretter ◽  
M. Cynader ◽  
W. Singer

The purpose of this study was to determine to what extent the cat parastriate cortex processes afferent geniculate activity in a way similar to that in area 17. The area explored was located on the lateral gyrus between the Horsley-Clarke coordinates A1 to 4 and L3 to 4. The receptive-field properties of area 18 cells and their responses to electrical stimulation of afferent and efferent pathways were measured with the same methods as described previously in area 17. Mutual correlations among these items were calculated and compared with the respective data from area 17. The results of this correlative analysis revealed numerous similarities between the two areas with regard to their afferent and efferent connections and their intrinsic organization. Consequently, the structure of the receptive fields and their numerical distribution resembled those in area 17. The same was true for the correlations between receptive-field parameters and afferent and efferent connectivity. The main differences were that area 18 cells had larger receptive fields and responded to considerably higher stimulus velocities. It is suggest-d that these differences are caused by the fact that area 18 receives subcortical afferents of the Y-type, whereas the dominant input to area 17 comes from the X-system. It is concluded that the area investigated in this study is organized in parallel to area 17 and deals with other aspects of visual information than area 17.

1985 ◽  
Vol 54 (4) ◽  
pp. 1068-1083 ◽  
Author(s):  
J. Duysens ◽  
G. A. Orban ◽  
J. Cremieux ◽  
H. Maes

In 149 units from area 17 and 48 units from area 18 the responses to stationary stimulation of different durations were compared with the responses to the same stimulus (a 0.3 degrees-wide light or dark bar) moving at different velocities. The aim was to test the hypothesis that the range of effective velocities depends on the time needed for the bar to cross the receptive field. Forty-two percent of the area 17 cells and 8% of the area 18 cells responded poorly or not at all to briefly presented stationary stimulation. These cells were unable to respond at high velocities, and for these "duration-sensitive" cells the velocity characteristics are well predicted on the basis of responses to stationary stimulation of different durations. Cells that responded equally well to periods of stationary stimulation ranging from 12.5 to 3,200 ms ("duration-insensitive cells") were found to be able to respond at all equivalent velocities, but their preference for either high, low, or intermediate velocities was not reflected in differences in responsiveness to the different durations tested. Duration-sensitive cells in area 17 tended to have a receptive field near the area centralis, and 73% of them were classified as S-family cells, one third being end-stopped S-cells. In contrast only 18% of the duration-insensitive cells were of the S family, and these S-family cells were rarely end-stopped (1/12) or rarely had receptive fields within 5 degrees of the fovea (3/12). Duration-sensitive cells had very long latencies (median 285 ms) in response to a stationary flashed light bar of 1 s duration but much shorter latencies (median 91 ms) when tested with a slowly moving light bar. This difference was not seen in duration-insensitive cells (median latencies = 61 and 59 ms). The ability to respond at high velocity was contrast dependent. At a low contrast level all cells failed to respond to brief stimulation, whether moving or stationary. At high contrast levels only the duration-insensitive cells showed an increased responsivity to brief stimuli. The absence of responses in duration-sensitive cells to brief stimuli of high contrast may depend upon suppressive influences reaching these cells before the excitatory influences. We conclude that the velocity upper cutoff of most S-family cells with a central receptive field can be predicted from a knowledge of the minimum duration of stationary presentation required for their activation (median ON duration threshold, 200 ms).(ABSTRACT TRUNCATED AT 400 WORDS)


1975 ◽  
Vol 38 (4) ◽  
pp. 735-750 ◽  
Author(s):  
B. Dreher ◽  
L. J. Cottee

1. Receptive-field properties of single neurons in cat's cortical area 18 were studied before and after partial bilateral lesions of area 17. 2. The majority of cells recorded from animals with intact visual cortex exhibited orientation selectivity, directional selectivity, and could be independently activated through either eye. All cells responded well to moving targets and nearly all of them exhibited broadly tuned preferences with respect to speed of the target. Over 45% of cells responded optimally or exclusively at very fast (above 50 degrees/s) speeds. 3. The majority of neurons recorded from animals with intact visual cortex responded weakly but clearly to appropriately oriented localized stationary stimuli flashed on and off. About one-third of the cells responded with mixed on-off discharges from all over their receptive field. In the receptive fields of 10% of cells, separate on- and off-discharge regions could be revealed. In the receptive fields of the remaining cells, only on- or only off-discharge regions could be revealed. 4. The majority of neurons recorded after ablation of area 17 were orientation selective; 50% of the cells were also direction selective. All neurons responded well to moving targets; about 65% of them responded optimally or exclusively at very fast target speeds. 5. Destruction of the dorsolateral part of contralaterial area 17 and most of contralateral area 18 caused significant reduction in proportion of cells in area 18 which could be activated through either eye. 6. The majority of neurons recorded after ablation responded to appropriately oriented localized stationary stimuli flashed on and off. Cells with mixed on-off discharge regions all over the receptive field with separate on- and off-discharge regions and with only on- or only off-discharge regions were found. 7. It is concluded that the processing of afferent visual information in area 18 is, to a great extent, independent of the information carried to this area by associational fibers from cells of area 17.


1976 ◽  
Vol 39 (3) ◽  
pp. 613-630 ◽  
Author(s):  
W. Singer ◽  
F. Tretter

An attempt was made to relate the alterations of cortical receptive fields as they result from binocular visual deprivation to changes in afferent, intrinsic, and efferent connections of the striate and parastriate cortex. The experiments were performed in cats aged at least 1 jr with their eyelids sutured closed from birth.The results of the receptive-field analysis in A17 confirmed the reduction of light-responsive cells, the occasional incongruity of receptive-field properties in the two eyes, and to some extent also the loss of orientation and direction selectivity as reported previously. Other properties common to numerous deprived receptive fields were the lack of sharp inhibitory sidebands and the sometimes exceedingly large size of the receptive fields. Qualitatively as well as quantitatively, similar alterations were observed in area 18. A rather high percentage of cells in both areas had, however, preserved at least some orientation preference, and a few receptive fields had tuning properties comparable to those in normal cats. The ability of area 18 cells in normal cats to respond to much higher stimulus velocities than area 17 cells was not influenced by deprivation.The results obtained with electrical stimulation suggest two main deprivation effects: 1) A marked decrease in the safety factor of retinothalamic and thalamocortical transmission. 2) A clear decrease in efficiency of intracortical inhibition. But the electrical stimulation data also show that none of the basic principles of afferent, intrinsic, and efferent connectivity is lost or changed by deprivation. The conduction velocities in the subcortical afferents and the differentiation of the afferents to areas 17 and 18 into slow- and fast-conducting projection systems remain unaltered. Intrinsic excitatory connections remain functional; this is also true for the disynaptic inhibitory pathways activated preferentially by the fast-conducting thalamocortical projection. The laminar distribution of cells with monosynaptic versus polsynaptic excitatory connections is similar to that in normal cats. Neurons with corticofugal axons remain functionally connected and show the same connectivity pattern as those in normal cats. The nonspecific activation system from the mesencephalic reticular formation also remains functioning both at the thalamic and the cortical level.We conclude from these and several other observations that most, if not all, afferent, intrinsic, and efferent connections of areas 17 and 18 are specified from birth and depend only little on visual experience. This predetermined structural plan, however, allows for some freedom in the domain of orientation tuning, binocular correspondence, and retinotopy which is specified only when visual experience is possible.


Of the many possible functions of the macaque monkey primary visual cortex (striate cortex, area 17) two are now fairly well understood. First, the incoming information from the lateral geniculate bodies is rearranged so that most cells in the striate cortex respond to specifically oriented line segments, and, second, information originating from the two eyes converges upon single cells. The rearrangement and convergence do not take place immediately, however: in layer IVc, where the bulk of the afferents terminate, virtually all cells have fields with circular symmetry and are strictly monocular, driven from the left eye or from the right, but not both; at subsequent stages, in layers above and below IVc, most cells show orientation specificity, and about half are binocular. In a binocular cell the receptive fields in the two eyes are on corresponding regions in the two retinas and are identical in structure, but one eye is usually more effective than the other in influencing the cell; all shades of ocular dominance are seen. These two functions are strongly reflected in the architecture of the cortex, in that cells with common physiological properties are grouped together in vertically organized systems of columns. In an ocular dominance column all cells respond preferentially to the same eye. By four independent anatomical methods it has been shown that these columns have the form of vertically disposed alternating left-eye and right-eye slabs, which in horizontal section form alternating stripes about 400 μm thick, with occasional bifurcations and blind endings. Cells of like orientation specificity are known from physiological recordings to be similarly grouped in much narrower vertical sheeet-like aggregations, stacked in orderly sequences so that on traversing the cortex tangentially one normally encounters a succession of small shifts in orientation, clockwise or counterclockwise; a 1 mm traverse is usually accompanied by one or several full rotations through 180°, broken at times by reversals in direction of rotation and occasionally by large abrupt shifts. A full complement of columns, of either type, left-plus-right eye or a complete 180° sequence, is termed a hypercolumn. Columns (and hence hypercolumns) have roughly the same width throughout the binocular part of the cortex. The two independent systems of hypercolumns are engrafted upon the well known topographic representation of the visual field. The receptive fields mapped in a vertical penetration through cortex show a scatter in position roughly equal to the average size of the fields themselves, and the area thus covered, the aggregate receptive field, increases with distance from the fovea. A parallel increase is seen in reciprocal magnification (the number of degrees of visual field corresponding to 1 mm of cortex). Over most or all of the striate cortex a movement of 1-2 mm, traversing several hypercolumns, is accompanied by a movement through the visual field about equal in size to the local aggregate receptive field. Thus any 1-2 mm block of cortex contains roughly the machinery needed to subserve an aggregate receptive field. In the cortex the fall-off in detail with which the visual field is analysed, as one moves out from the foveal area, is accompanied not by a reduction in thickness of layers, as is found in the retina, but by a reduction in the area of cortex (and hence the number of columnar units) devoted to a given amount of visual field: unlike the retina, the striate cortex is virtually uniform morphologically but varies in magnification. In most respects the above description fits the newborn monkey just as well as the adult, suggesting that area 17 is largely genetically programmed. The ocular dominance columns, however, are not fully developed at birth, since the geniculate terminals belonging to one eye occupy layer IVc throughout its length, segregating out into separate columns only after about the first 6 weeks, whether or not the animal has visual experience. If one eye is sutured closed during this early period the columns belonging to that eye become shrunken and their companions correspondingly expanded. This would seem to be at least in part the result of interference with normal maturation, though sprouting and retraction of axon terminals are not excluded.


1996 ◽  
Vol 75 (6) ◽  
pp. 2441-2450 ◽  
Author(s):  
D. D. Rasmusson

1. Single neurons in the ventroposterior lateral thalamic nucleus were studied in 10 anesthetized raccoons, 4 of which had undergone amputation of the fourth digit 4-5 mo before recording. Neurons with receptive fields on the glabrous skin of a forepaw digit were examined in response to electrical stimulation of the “on-focus” digit that contained the neuron's receptive field and stimulation of an adjacent, “off-focus” digit. 2. In normal raccoons all neurons responded to on-focus stimulation with an excitation at a short latency (mean 13 ms), whereas only 63% of the neurons responded to off-focus digit stimulation. The off-focus responses had a longer latency (mean 27.2 ms) and a higher threshold than the on-focus responses (800 and 452 microA, respectively). Only 3 of 32 neurons tested with off-focus stimulation had both a latency and a threshold within the range of on-focus values. Inhibition following the excitation was seen in the majority of neurons with both types of stimulation. 3. In the raccoons with digit removal, the region of the thalamus that had lost its major peripheral input (the “deafferented” region) was distinguished from the normal third and fifth digit regions on the basis of the sequence of neuronal receptive fields within a penetration and receptive field size as described previously. 4. Almost all of the neurons in the deafferented region (91%) were excited by stimulation of one or both adjacent digits. The average latency for these responses was shorter (15.3 ms) and the threshold was lower than was the case with off-focus stimulation in control animals. These values were not significantly different from the responses to on-focus stimulation in the animals with digit amputation. 5. These results confirm that reorganization of sensory pathways can be observed at the thalamic level. In addition to the changes in the somatotopic map that have been shown previously with the use of mechanical stimuli, the present paper demonstrates an improvement in several quantitative measures of single-unit responses. Many of these changes suggest that this reorganization could be explained by an increased effectiveness of preexisting, weak connections from the off-focus digits; however, the increase in the proportion of neurons responding to stimulation of adjacent digits may indicate that sprouting of new connections also occurs.


1990 ◽  
Vol 64 (4) ◽  
pp. 1134-1148 ◽  
Author(s):  
S. N. Currie ◽  
P. S. Stein

1. We demonstrated multisecond increases in the excitability of the rostral-scratch reflex in the turtle by electrically stimulating the shell at sites within the rostral-scratch receptive field. To examine the cellular mechanisms for these multisecond increases in scratch excitability, we recorded from single cutaneous afferents and sensory interneurons that responded to stimulation of the shell within the rostral-scratch receptive field. A single segment of the midbody spinal cord (D4, the 4th postcervical segment) was isolated in situ by transecting the spinal cord at the segment's anterior and posterior borders. The isolated segment was left attached to its peripheral nerve that innervates part of the rostral-scratch receptive field. A microsuction electrode (4-5 microns ID) was used to record extracellularly from the descending axons of cutaneous afferents and interneurons in the spinal white matter at the posterior end of the D4 segment. 2. The turtle shell is innervated by slowly and rapidly adapting cutaneous afferents. All cutaneous afferents responded to a single electrical stimulus to the shell with a single action potential. Maintained mechanical stimulation applied to the receptive field of some slowly adapting afferents produced several seconds of afterdischarge at stimulus offset. We refer to the cutaneous afferent afterdischarge caused by mechanical stimulation of the shell as "peripheral afterdischarge." 3. Within the D4 spinal segment there were some interneurons that responded to a brief mechanical stimulus within their receptive fields on the shell with short afterdischarge and others that responded with long afterdischarge. Short-afterdischarge interneurons responded to a single electrical pulse to a site in their receptive fields either with a brief train of action potentials or with a single action potential. Long-afterdischarge interneurons responded to a single electrical shell stimulus with up to 30 s of afterdischarge. Long-afterdischarge interneurons also exhibited strong temporal summation in response to a pair of electrical shell stimuli delivered up to several seconds apart. Because all cutaneous afferents responded to an electrical shell stimulus with a single action potential, we conclude that electrically evoked afterdischarge in interneurons was produced by neural mechanisms in the spinal cord; we refer to this type of afterdischarge as "central afterdischarge." 4. These results demonstrate that neural mechanisms for long-lasting excitability changes in response to cutaneous stimulation reside in a single segment of the spinal cord. Cutaneous interneurons with long afterdischarge may serve as cellular loci for multise


2010 ◽  
Vol 104 (5) ◽  
pp. 2624-2633 ◽  
Author(s):  
Catherine A. Dunn ◽  
Carol L. Colby

Our eyes are constantly moving, allowing us to attend to different visual objects in the environment. With each eye movement, a given object activates an entirely new set of visual neurons, yet we perceive a stable scene. One neural mechanism that may contribute to visual stability is remapping. Neurons in several brain regions respond to visual stimuli presented outside the receptive field when an eye movement brings the stimulated location into the receptive field. The stored representation of a visual stimulus is remapped, or updated, in conjunction with the saccade. Remapping depends on neurons being able to receive visual information from outside the classic receptive field. In previous studies, we asked whether remapping across hemifields depends on the forebrain commissures. We found that, when the forebrain commissures are transected, behavior dependent on accurate spatial updating is initially impaired but recovers over time. Moreover, neurons in lateral intraparietal cortex (LIP) continue to remap information across hemifields in the absence of the forebrain commissures. One possible explanation for the preserved across-hemifield remapping in split-brain animals is that neurons in a single hemisphere could represent visual information from both visual fields. In the present study, we measured receptive fields of LIP neurons in split-brain monkeys and compared them with receptive fields in intact monkeys. We found a small number of neurons with bilateral receptive fields in the intact monkeys. In contrast, we found no such neurons in the split-brain animals. We conclude that bilateral representations in area LIP following forebrain commissures transection cannot account for remapping across hemifields.


1979 ◽  
Vol 42 (4) ◽  
pp. 954-974 ◽  
Author(s):  
S. C. Rosen ◽  
K. R. Weiss ◽  
I. Kupfermann

1. The cells of two clusters of small neurons on the ventrocaudal surface of each hemicerebral ganglion of Aplysia were found to exhibit action potentials following tactile stimuli applied to the skin of the head. These neurons appear to be mechanosensory afferents since they possess axons in the nerves innervating the skin and tactile stimulation evokes spikes with no prepotentials, even when the cell bodies are sufficiently hyperpolarized to block some spikes. The mechanosensory afferents may be primary afferents since the sensory response persists after chemical synaptic transmission is blocked by bathing the ganglion and peripheral structures in seawater with a high-Mg2+ and low-Ca2+ content. 2. The mechanosensory afferents are normally silent and are insensitive to photic, thermal, and chemical stimuli. A punctate tactile stimulus applied to a circumscribed region of skin can evoke a burst of spikes. If the stimulus is maintained at a constant forces, the mechanosensory response slowly adapts over a period of seconds. Repeated brief stimuli have little or no effect on spike frequency within a burst. 3. Approximately 81% of the mechanoafferent neurons have a single ipsilateral receptive field. The fields are located on the lips, the anterior tentacles, the dorsal portion of the head, the neck, or the perioral zone. Because many cells have collateral axons in the cerebral connectives, receptive fields elsewhere on the body are a possibility. The highest receptive-field density was associated with the lips. Within each area, receptive fields vary in size and shape. Adjacent fields overlap and larger fields frequently encompass several smaller ones. The features of some fields appear invariant from one animal to the next. A loose form of topographic organization of the mechanoafferent cells was observed. For example, cells located in the medial cluster have lip receptive fields, and most cells in the posterolateral portion of the lateral clusters have tentacle receptive fields. 4. Intracellular stimulation of individual mechanoafferents evokes short and constant-latency EPSPs in putative motor neurons comprising the identified B-cell clusters of the cerebral ganglion. On the basis of several criteria, these EPSPs appear to be several criteria, these EPSPs appear to be chemically mediated and are monosynaptic. 5. Repetitive intracellular stimulation of individual mechanoafferent neurons at low rates results in a gradual decrement in the amplitude of the EPSPs evoked in B cluster neurons. EPSP amplitude can be restored following brief periods of rest, but subsequent stimulation leads to further diminution of the response. 6. A decremented response cannot be restored by strong mechanical stimulation outside the receptive field of the mechanoafferent or by electrical stimulation of the cerebral nerves or connectives...


1978 ◽  
Vol 41 (6) ◽  
pp. 1511-1534 ◽  
Author(s):  
A. D. Craig ◽  
D. N. Tapper

1. The lateral cervical nucleus (LCN) was investigated with extracellular recordings in the anesthetized cat. A total of 556 LCN units were characterized; the locations of most of these were histologically verified. Half of these had receptive fields on the rostral third of the ipsilateral body surface including the face; 14% had fields on the thorax or abdomen, 33% had fields on the hindlimb or tail, and about 3% had receptive fields larger than one limb. 2. The LCN was observed to be somatotopically organized in experiments using angled microelectrode penetrations. Hindlimb units were dorsolateral, forelimb units ventromedial, and face units most medial within the LCN. In regions where LCN cells were present only in the medial portion of the dorsolateral funiculus, they were all forelimb units. 3. A special subpopulation (17%) of cells were clustered most ventromedially in the LCN. These units had large or disjoint receptive fields, and/or responded to deep, visceral, or noxious stimulation. A third of these did not project in the medial lemniscus (ML); many were synaptically activated by stimulation of the ML. Those that did project in the ML had significantly longer latencies than all other LCN units. It is suggested that this subpopulation contains local LCN interneurons. 4. The specific mechanoreceptor inputs were identified for each of 121 projecting LCN units. Receptor inputs were uniform across each receptive field; that is, each unit that responded to a given receptor type was observed to respond to receptors of that type throughout its receptive field. Input from large-fiber-diameter, velocity-sensitive mechanoreceptors was predominant. The absence of input from slowly adapting type I and II receptors and from joint receptors was confirmed. A significant number of units (17.3%) could be driven by only one receptor type. The LCN sample profile agrees closely with the receptor representation in the hindlimb portion of the spinocervical tract. It is concluded that these data that anatomic specification of convergence occurs in the LCN with respect to receptor connectivity, and that this specification originates in lamina IV of the dorsal horn. 5. Stimulation of the dorsal column nuclei synaptically excited 23% of the LCN units tested. In two cases it was possible to demonstrate, by collision, that this occurred via collaterals of spinocervical tract axons. It is concluded that some spinocervical axons have collaterals terminating in the rostral parts of the dorsal column nuclei.


1991 ◽  
Vol 66 (3) ◽  
pp. 777-793 ◽  
Author(s):  
J. W. McClurkin ◽  
T. J. Gawne ◽  
B. J. Richmond ◽  
L. M. Optican ◽  
D. L. Robinson

1. Using behaving monkeys, we studied the visual responses of single neurons in the parvocellular layers of the lateral geniculate nucleus (LGN) to a set of two-dimensional black and white patterns. We found that monkeys could be trained to make sufficiently reliable and stable fixations to enable us to plot and characterize the receptive fields of individual neurons. A qualitative examination of rasters and a statistical analysis of the data revealed that the responses of neurons were related to the stimuli. 2. The data from 5 of the 13 "X-like" neurons in our sample indicated the presence of antagonistic center and surround mechanisms and linear summation of luminance within center and surround mechanisms. We attribute the lack of evidence for surround antagonism in the eight neurons that failed to exhibit center-surround antagonism either to a mismatch between the size of the pixels in the stimuli and the size of the receptive field or to the lack of a surround mechanism (i.e., the type II neurons of Wiesel and Hubel). 3. The data from five other neurons confirm and extend previous reports indicating that the surround regions of X-like neurons can have nonlinearities. The responses of these neurons were not modulated when a contrast-reversing, bipartite stimulus was centered on the receptive field, which suggests a linear summation within the center and surround mechanisms. However, it was frequently the case for these neurons that stimuli of identical pattern but opposite contrast elicited responses of similar polarity, which indicates nonlinear behavior. 4. We found a wide variety of temporal patterns in the responses of individual LGN neurons, which included differences in the magnitude, width, and number of peaks of the initial on-transient and in the magnitude of the later sustained component. These different temporal patterns were repeatable and clearly different for different visual patterns. These results suggest that visual information may be carried in the shape as well as in the amplitude of the response waveform.


Sign in / Sign up

Export Citation Format

Share Document