Alteration of Medullary Dorsal Horn Neuronal Activity Following Inferior Alveolar Nerve Transection in Rats

2001 ◽  
Vol 86 (6) ◽  
pp. 2868-2877 ◽  
Author(s):  
Koichi Iwata ◽  
Takao Imai ◽  
Yoshiyuki Tsuboi ◽  
Akimasa Tashiro ◽  
Akiko Ogawa ◽  
...  

The effects of inferior alveolar nerve (IAN) transection on escape behavior and MDH neuronal activity to noxious and nonnoxious stimulation of the face were precisely analyzed. Relative thresholds for escape from mechanical stimulation applied to the whisker pad area ipsilateral to the transection were significantly lower than that for the contralateral and sham-operated whisker pad until 28 days after the transection, then returned to the preoperative level at 40 days after transection. A total of 540 neurons were recorded from the medullary dorsal horn (MDH) of the nontreated naive rats [low-threshold mechanoreceptive (LTM), 27; wide dynamic range (WDR), 31; nociceptive specific (NS), 11] and sham-operated rats with skin incision (LTM, 34; WDR, 30; NS, 23) and from the ipsilateral (LTM, 82; WDR, 82; NS, 31) and contralateral MDH relative to the IAN transection (LTM, 77; WDR, 82; NS, 33). The electrophysiological properties of these neurons were precisely analyzed. Background activity of WDR neurons on the ipsilateral side relative to the transection was significantly increased at 2–14 days after the operation as compared with that of naive rats. Innocuous and noxious mechanical-evoked responses of LTM and WDR neurons were significantly enhanced at 2–14 days after IAN transection. The mean area of the receptive fields of WDR neurons was significantly larger on the ipsilateral MDH at 2–7 days after transection than that of naive rats. We could not observe any modulation of thermal responses of WDR and NS neurons following IAN transection. Also, no MDH neurons were significantly affected in the rats with sham operations. The present findings suggest that the increment of neuronal activity of WDR neurons in the MDH following IAN transection may play an important role in the development of the mechano-allodynia induced in the area adjacent to the area innervated by the injured nerve.

1983 ◽  
Vol 49 (4) ◽  
pp. 948-960 ◽  
Author(s):  
J. O. Dostrovsky ◽  
Y. Shah ◽  
B. G. Gray

1. This study examined the inhibitory effects elicited by brain stem stimulation on the somatosensory responses of trigeminal medullary dorsal horn (subnucleus caudalis of the spinal trigeminal nucleus) neurons. Single-unit extracellular recordings were obtained in chloralose-anesthetized cats. Neurons were classified as wide dynamic range (WDR), nociceptive specific (NS), or low-threshold mechanoreceptive (LTM). Conditioning stimuli were delivered to the periaqueductal gray (PAG), nucleus cuneiformis (CU), nucleus raphe magnus (NRM), nucleus reticularis gigantocellularis (NGC), and nucleus reticularis magnocellularis (NMC). 2. Over 97% of the neurons tested could be inhibited by stimulation in all regions except PAG. Stimulation in the PAG inhibited 91% of the neurons tested. There was no statistically significant difference in the incidence of inhibition of WDR and NS nociceptive (noci) neurons and the LTM nonnociceptive (nonnoci) neurons. 3. Mean stimulation intensities necessary to produce inhibition were determined for each neuron from each stimulation site. The current thresholds necessary to inhibit the responses of noci neurons were found to be significantly lower, on the average, than those of nonnoci neurons at stimulation sites in the PAG, CU, and NGC. 4. Inhibition of the responses of WDR neurons required a lower mean current than for NS neurons but was statistically significant only for PAG and NGC. Thresholds for inhibiting the responses of NS neurons were similar to those for inhibiting the responses of LTM neurons for all regions except CU, where LTM thresholds were markedly but not significantly higher. 5. Stimulation thresholds were found to be lowest in NMC, while in NGC, NRM, and CU they were all similar and slightly higher. Stimulation in the PAG required the highest currents to produce inhibition. 6. These results indicate that stimulation in NRM and PAG not only inhibits the responses of noci neurons but also those of nonnoci neurons. Furthermore, stimulation in reticular regions adjacent to NRM and PAG is frequently even more effective in inhibiting the responses of both noci and nonnoci neurons. In addition, WDR neurons are more effectively inhibited than NS or LTM neurons. These results are compared with those obtained using similar methods in cat lumbar dorsal horn.


1998 ◽  
Vol 80 (4) ◽  
pp. 2210-2214 ◽  
Author(s):  
Kai-Ming Zhang ◽  
Xiao-Min Wang ◽  
Angela M. Peterson ◽  
Wen-Yan Chen ◽  
Sukhbir S. Mokha

Kai-Ming Zhang, Xiao-Min Wang, Angela M. Peterson, Wen-Yan Chen, and Sukhbir S. Mokha. α2-Adrenoceptors modulate NMDA-evoked responses of neurons in the superficial and deeper dorsal horn of the medulla. J. Neurophysiol. 80: 2210–2214, 1998. Extracellular single unit recordings were made from neurons in the superficial and deeper dorsal horn of the medulla (trigeminal nucleus caudalis) in 21 male rats anesthetized with urethan. NMDA produced an antagonist-reversible excitation of 46 nociceptive as well as nonnociceptive neurons. Microiontophoretic application of a preferential α2-adrenoceptor (α2AR) agonist, (2-[2,6-dichloroaniline]-2-imidazoline) hydrochloride (clonidine), reduced the NMDA-evoked responses of 86% (6/7) of nociceptive-specific (NS) neurons, 82% (9/11) of wide dynamic range (WDR) neurons, and 67% (4/6) of low-threshold (LT) neurons in the superficial dorsal horn. In the deeper dorsal horn, clonidine inhibited the NMDA-evoked responses of 94% (16/17) of NS and WDR neurons and 60% (3/5) of LT neurons. Clonidine facilitated the NMDA-evoked responses in 14% (1/17) of NS, 9% (1/11) of WDR, and 33% (2/6) of LT neurons in the superficial dorsal horn. Idazoxan, an α2AR antagonist, reversed the inhibitory effect of clonidine in 90% (9/10) of neurons, whereas prazosin, an α1-adrenoceptor antagonist with affinity for α2BAR, and α2CAR, were ineffective. We suggest that activation of α2ARs produces a predominantly inhibitory modulation of the NMDA-evoked responses of nociceptive neurons in the medullary dorsal horn.


1986 ◽  
Vol 55 (6) ◽  
pp. 1187-1201 ◽  
Author(s):  
W. E. Renehan ◽  
M. F. Jacquin ◽  
R. D. Mooney ◽  
R. W. Rhoades

In Nembutal-anesthetized rats, 31 physiologically identified medullary dorsal horn (MDH) cells were labeled with horseradish peroxidase (HRP). Ten responded only to deflection of one or more vibrissae. Six cells were activated by guard hair movement only, six by deflection of guard hairs or vibrissa(e), and seven by pinch of facial skin with serrated forceps. Different classes of low-threshold cells could not be distinguished on the basis of their somadendritic morphologies or laminar distribution. Neurons activated by multiple vibrissae were unique, however, in that one sent its axon into the medial lemniscus, and three projected into the trigeminal spinal tract. None of the guard hair-only or vibrissae-plus-guard hair neurons had such projections. Cells that responded best to noxious stimulation were located mainly in laminae I, II, and deep V, while neurons activated by vibrissa(e) and/or guard hair deflection were located in layers III, IV, and superficial V. Low-threshold neurons generally had fairly thick dendrites with few spines, whereas high-threshold cells tended to have thinner dendrites with numerous spines. Moreover, the dendritic arbors of low-threshold cells were, for the most part, denser than those of the noxious cells. Neurons with mandibular receptive fields were located in the dorsomedial portion of the MDH; cells with ophthalmic fields were found in the ventrolateral MDH, and maxillary cells were interposed. Cells sensitive to deflection of dorsal mystacial vibrissae and/or guard hairs were located ventral to those activated by more ventral hairs. Neurons with rostral receptive fields were found in the rostral MDH, while cells activated by hairs of the caudal mystacial pad, periauricular, and periorbital regions were located in the caudal MDH. Receptive-field types were encountered that have not been reported for trigeminal primary afferent neurons: multiple vibrissae; vibrissae plus guard hairs; and wide dynamic range. The latter two can be explained by the convergence of different primary afferent types onto individual neurons. Our failure to find a significant relationship between dendritic area (in the transverse plane) and the number of vibrissae suggests that primary afferent convergence may not be responsible for the synthesis of the multiple vibrissae receptive field. Excitatory connections between MDH neurons may, therefore, account for multiple vibrissae receptive fields in the MDH.


1989 ◽  
Vol 62 (2) ◽  
pp. 437-449 ◽  
Author(s):  
W. Maixner ◽  
R. Dubner ◽  
D. R. Kenshalo ◽  
M. C. Bushnell ◽  
J. L. Oliveras

1. We examined the activity of thermally sensitive trigeminothalamic neurons and nonprojection neurons in the medullary dorsal horn (trigeminal nucleus caudalis) in three monkeys performing thermal and visual detection tasks. 2. An examination of neuronal stimulus-response functions, obtained during thermal-detection tasks in which noxious heat stimuli were applied to the face, indicated that wide-dynamic-range neurons (WDR, responsive to innocuous mechanical stimuli with greater responses to noxious mechanical stimuli) could be subclassified based on the slope values of linear regression lines. WDR1 neurons exhibited significantly greater sensitivity to noxious heat stimulation than WDR2 neurons or nociceptive-specific neurons (NS, responsive only to noxious stimuli). 3. In one behavioral task, the monkeys detected 1.0 degrees C increases in noxious heat from preceding noxious heat stimuli ranging from 44 to 48 degrees C. WDR1, WDR2, and NS neurons increased their discharge frequency as a function of the intensity of the first noxious heat temperature (T1) as well as the final temperature (T2). The responses of WDR1 neurons were greater than those produced by WDR2 or NS neurons across all the temperatures examined. The order of stimulus presentation affected the responses of WDR1 neurons to 1.0 degrees C increases in the noxious heat range but not those of WDR2 or NS neurons. 4. In a second behavioral task, the monkeys detected small increases in noxious heat (0.2-0.8 degrees C) from a first temperature of 46 degrees C. Although the responses of all three classes of neurons were monotonically related to stimulus intensity, WDR1 neurons exhibited greater sensitivity to small temperature increases than either WDR2 or NS neurons. 5. Subpopulations of all three classes of neurons exhibited responses that were independent of thermal stimulus parameters or sensory modality and that only occurred during the behavioral task. These task-related responses were time-locked to specific behavioral events associated with trial initiation and trial continuation. 6. These data provide evidence that a subpopulation of WDR neurons is the dorsal horn cell type most sensitive to small increases in noxious heat in the 45-49 degrees C temperature range and provides the most information about stimulus intensity. The findings support the view that nociceptive neurons have the capacity to precisely encode stimulus features in the noxious range and that WDR neurons are likely to participate in the monkeys' ability to perceive the intensity of such stimuli.


2008 ◽  
Vol 109 (4) ◽  
pp. 698-706 ◽  
Author(s):  
Douglas G. Ririe ◽  
Lindsay R. Bremner ◽  
Maria Fitzgerald

Background Pain behavior in response to skin incision is developmentally regulated, but little is known about the underlying neuronal mechanisms. The authors hypothesize that the spatial activation and intensity of dorsal horn neuron responses to skin incision differ in immature and adult spinal cord. Methods Single wide-dynamic-range dorsal horn cell spike activity was recorded for a minimum of 2 h from anesthetized rat pups aged 7 and 28 days. Cutaneous pinch and brush receptive fields were mapped and von Frey hair thresholds were determined on the plantar hind paw before and 1 h after a skin incision was made. Results Baseline receptive field areas for brush and pinch were larger and von Frey thresholds lower in the younger animals. One hour after the incision, brush and pinch receptive field area, spontaneous firing, and evoked spike activity had significantly increased in the 7-day-old animals but not in the 28-day-old animals. Von Frey hair thresholds decreased at both ages. Conclusions Continuous recording from single dorsal horn cells both before and after injury shows that sensitization of receptive fields and of background and afferent-evoked spike activity at 1 h is greater in younger animals. This difference is not reflected in von Frey mechanical thresholds. These results highlight the importance of studying the effects of injury on sensory neuron physiology. Injury in young animals induces a marked and rapid increase in afferent-evoked activity in second-order sensory neurons, which may be important when considering long-term effects and analgesic interventions.


1993 ◽  
Vol 70 (6) ◽  
pp. 2260-2275 ◽  
Author(s):  
P. Peppel ◽  
F. Anton

1. Most quantitative examinations of nociception are performed with thermal or mechanical stimuli. Because nociceptive processing mechanisms may depend on the modality of the stimuli, comparable studies on chemonociception are necessary. 2. We examined the activity of chemonociceptive medullary dorsal horn neurons in halothane-anesthetized rats. For controlled noxious chemical stimulation, defined CO2 pulses were applied to the nasal mucosa. The effects of stimulus intensity, duration, and interstimulus interval (ISI) were tested by performing three different CO2 stimulation protocols (see below). 3. The recorded neurons were characterized by intranasal and facial stimuli of different modalities. The cells received input from intranasal A delta- and/or C-fibers. All tested neurons also responded to other intranasally applied irritants, e.g., mustard oil. Furthermore, the units were sensitive to intranasal high-threshold mechanical stimulation and to facial mechanical stimulation. According to the properties of their facial mechanoreceptive fields, the units were classified as wide dynamic range (WDR) or nociceptive specific (NS) neurons. The majority of the cells also responded to facially applied noxious heat stimuli, so that most of the recorded neurons were found to be multimodal. Some of the neurons, in addition, had convergent input from primary afferents innervating the maxillary tooth pulps or the cornea and periorbital structures. 4. In the first stimulation protocol we presented four different CO2 concentrations (25, 50, 75, and 100%; stimulus duration 2 s). In total, each concentration was applied 10 times (2 trains of 5 stimuli). Stimulus response functions (SRFs) were computed with average responses to identical stimuli. All but 2 of the 23 tested neurons displayed enhanced responses after stimulation with increasing intensities. In general, WDR cells (n = 15) discharged more vigorously to the same CO2 concentration than NS cells (n = 8). WDR neurons discriminated more reliably between stimulus intensities in the low to moderate range (25–50% CO2) than NS cells. Both categories of neurons, however, discriminated equally well in the moderate- to high-intensity range (50–75% CO2). The discriminatory capacity of WDR and NS neurons was reduced in the highest concentration range (75–100% CO2). The proportion of NS neurons significantly discriminating between these intensities tended to be higher compared with WDR neurons when stimuli were applied with long ISIs (120 s). 5. To examine the effects of the duration of the ISI, identical test sequences were performed with ISIs of 30 and 120 s. (ABSTRACT TRUNCATED AT 400 WORDS)


1996 ◽  
Vol 75 (6) ◽  
pp. 2606-2628 ◽  
Author(s):  
J. T. Katter ◽  
R. J. Dado ◽  
E. Kostarczyk ◽  
G. J. Giesler

1. A goal of this study was to determine whether neurons in the sacral spinal cord that project to the diencephalon are involved in the processing and transmission of sensory information that arises in the perineum and pelvis. Therefore, 58 neurons in segments L6-S2 were activated antidromically with currents < or = 30 microA from points in the contralateral diencephalon in rats that were anesthetized with urethan. 2. Responses to mechanical stimuli applied to the cutaneous receptive fields of these neurons were used to classify them as low-threshold (LT), wide dynamic range (WDR) or high-threshold (HT) neurons. Twenty-two neurons (38%) responded preferentially to brushing (LT neurons). Eighteen neurons (31%) responded to brushing but responded with higher firing frequencies to noxious mechanical stimuli (WDR neurons). Eighteen neurons (31%) responded only to noxious intensities of mechanical stimulation (HT neurons). LT neurons were recorded predominantly in nucleus proprius of the dorsal horn. Nociceptive neurons (WDR and HT) were recorded throughout the dorsal horn. 3. Cutaneous receptive fields were mapped for 56 neurons. Forty-five (80%) had receptive fields that included at least two of the following regions ipsilaterally: the rump, perineum, or tail. Eleven neurons (20%) had receptive fields that were restricted to one of these areas or to the ipsilateral hind limb. Thirty-eight neurons (68%) had cutaneous receptive fields that also included regions of the contralateral tail or perineum. On the perineum, receptive fields usually encompassed perianal and perivaginal areas including the clitoral sheath. There were no statistically significant differences in the locations or sizes of receptive fields for LT neurons compared with nociceptive (WDR and HT) neurons. 4. Thirty-seven LT, WDR, and HT neurons were tested for their responsiveness to heat stimuli. Five (14%) responded to increasing intensities of heat with graded increases in their firing frequencies. Thirty-two LT, WDR, and HT neurons also were tested with cold stimuli. None responded with graded increases in their firing frequencies to increasingly colder stimuli. There were no statistically significant differences among the responses of LT, WDR, and HT neurons to either heat or cold stimuli. 5. Forty LT, WDR, and HT neurons were tested for their responsiveness to visceral stimuli by distending a balloon placed into the rectum and colon with a series of increasing pressures. Seventeen (43%) exhibited graded increases in their firing frequencies in response to increasing pressures of colorectal distention (CrD). None of the responsive neurons responded reproducibly to CrD at an intensity of 20 mmHg, and all responded at intensities of > or = 80 mmHg. More than 90% responded abruptly at stimulus onset, responded continuously throughout the stimulus period, and stopped responding immediately after termination of the stimulus. 6. Thirty-one neurons were tested for their responsiveness to distention of a balloon placed inside the vagina. Eleven (35%) exhibited graded increases in their firing frequencies in response to increasing pressures of vaginal distention (VaD). The thresholds and temporal profiles of the responses to VaD were similar to those for CrD. Twenty-nine neurons were tested with both CrD and VaD. Thirteen (45%) were excited by both stimuli, four (14%) responded to CrD but not VaD, and one (3%) was excited by VaD but not CrD. Neurons excited by CrD, VaD, or both were recorded throughout the dorsal horn. 7. As a population, WDR neurons, but not LT or HT neurons, encoded increasing pressures of CrD and VaD with graded increases in their firing frequencies. The responses of WDR neurons to CrD differed significantly from those of either LT or HT neurons. Regression analyses of the stimulus-response functions of responsive WDR neurons to CrD and VaD were described by power functions with exponents of 1.6 and 2.4, respectively.(ABSTRACT TRUNCATED)


1996 ◽  
Vol 76 (5) ◽  
pp. 3025-3037 ◽  
Author(s):  
K. Ren ◽  
R. Dubner

1. The role of descending brain stem modulatory systems in the development of persistent behavioral hyperalgesia and dorsal horn hyperexcitability was studied in rats with unilateral hindpaw inflammation. Inflammation was induced by intraplantar injection of complete Freund's adjuvant (CFA, 0.05 ml of an 1:1 oil/saline emulsion, 25 micrograms Mycobacterium), or lambda carrageenan (1 mg/ 0.1 ml saline). Thermal hyperalgesia was assessed by testing paw withdrawal latency (PWL) to a noxious heat stimulus. Superficial dorsal horn nociceptive (nociceptive specific, NS, and wide dynamic range, WDR) neuronal activity in the lumbar spinal cord was recorded extracellularly in chloralose-anesthetized rats. 2. Bilateral lesions of the dorsolateral funiculus (DLFX) at the T10 level were made in 13 rats, and the development of thermal hyperalgesia in these rats was compared with sham-operated or nonoperated control rats. In rats receiving a 0.05-ml CFA injection, a similar magnitude of hyperalgesia developed in the inflamed paw in DLFX (n = 7) and control (n = 8) rats. In addition, there appeared to be a contralateral hyperalgesia that was most apparent between 2 and 24 h after injection of CFA in DLFX rats. The CFA-induced contralateral effects were significantly different (P < 0.05) from the control rats at 2 and 6 h. 3. The intensity of the thermal stimulus was reduced and a low dose of carrageenan (1 mg) was injected into one hindpaw to further reveal the potentiation of hyperalgesia in DLFX rats. Throughout the 0.5- to 4-h time period after the injection of carrageenan, the PWL of the inflamed paws in DLFX rats (n = 6) was significantly shorter than that of control rats (n = 10; 2-way analysis of variance, F1,14 = 14.04, P < 0.01), suggesting the enhancement of hyperalgesia in DLFX rats. A hyperalgesia on the noninflamed paws was also more apparent in this experiment in DLFX rats, when compared with control rats. DLFX did not affect the baseline PWL of the rats. 4. A reversible spinalization was produced by application of a local anesthetic, lidocaine (2%, 0.1 ml), onto the dorsal surface of the thoracic cord (T10-12). This procedure produced thoracic spinal block that lasted for 90 min. The effects of thoracic lidocaine block on nociceptive neuronal activity were studied in 11 neurons (NS = 7, WDR = 4) in CFA-inflamed rats and 10 neurons (NS = 6, WDR = 4) in noninflamed naive rats. After the thoracic lidocaine block, rats showed increases in background activity, expansion of the receptive fields, and increased responses to noxious thermal, mechanical, and electrical stimuli. 5. Quantitative comparison revealed that the mean change in background firing rate of dorsal horn neurons was greater in inflamed [NS: 18.3 +/- 0.4 Hz, (mean +/- SE) n = 7; WDR: 10.9 +/- 0.7 Hz, n = 4] than that in noninflamed (NS: 2.3 +/- 0.3 Hz, n = 6; WDR: 3.3 +/- 0.4 Hz, n = 4) rats (P < 0.01, t-test) after thoracic lidocaine block. Thoracic saline application produced a 2.8 +/- 0.4 Hz decrease in background activity (2 NS and 2 WDR units). The expansion of the receptive fields after thoracic lidocaine block was also greater in inflamed (NS: 141 +/- 9% control, n = 6; WDR: 240 +/- 36% control, n = 4) than in noninflamed (NS: 114 +/- 9% control, n = 6; WDR: 167 +/- 21% control, n = 4) rats (P < 0.05, t-test). Thoracic saline did not produce a significant change in the receptive field size (105 +/- 9%, n = 4). The increases in responses to noxious thermal and mechanical stimuli after thoracic lidocaine block were also significantly greater in inflamed than in noninflamed rats (P < 0.01). There was no significant difference in the increase in responses to electrical stimulation of the sciatic nerve after lidocaine between inflamed and noninflamed rats.(ASTRACT TRUNCATED)


1992 ◽  
Vol 68 (2) ◽  
pp. 384-391 ◽  
Author(s):  
J. X. Hao ◽  
X. J. Xu ◽  
Y. X. Yu ◽  
A. Seiger ◽  
Z. Wiesenfeld-Hallin

1. The activity of 197 single dorsal horn neurons was recorded extracellularly in the spinal cord of decerebrate, spinalized, unanesthetized rats. The response properties of 174 wide dynamic range (WDR) neurons to electrical, mechanical, and thermal stimulation in three groups of rats were studied:normal, 1-4 days after transient spinal cord ischemia induced photochemically by laser irradiation when the rats exhibited behavioral hypersensitivity to mechanical stimuli (allodynia), and 10-20 days after spinal ischemia when the allodynia had ceased. 2. In normal rats, the responses of dorsal horn WDR neurons to suprathreshold electrical stimulation of their receptive fields consisted of a short-latency (A) and a long-latency (C) response. In 77% of the neurons (57/74), there was a separation between the A- and C-fiber responses. The response threshold (defined as 20% increase in neuronal discharges above background activity) to mechanical stimulation applied with calibrated von Frey hairs was 13.8 g, and the discharges of these neurons to graded stimulation increased linearly. 3. In 68% of WDR neurons in allodynic rats (38/56), the response to suprathreshold electrical stimuli was a single burst with no separation between A- and C-fiber responses. The magnitude and duration of the response were significantly increased compared with those recorded in normal rats. The sensitivity of these neurons to mechanical stimulation was also greatly increased, expressed by a lowered threshold (2.1 +/- 0.3 g, mean +/- SE) and a shift to the left of the nonlinear stimulus-response curve. The background activity of the neurons and the size of the receptive fields were, however, unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)


1994 ◽  
Vol 71 (3) ◽  
pp. 981-1002 ◽  
Author(s):  
R. J. Dado ◽  
J. T. Katter ◽  
G. J. Giesler

1. The goal of this study was to gather data that would increase our understanding of nociceptive processing by spinothalamic tract (STT) neurons that receive inputs from the hand and arm. Fifty neurons in the cervical enlargement of urethan-anesthetized rats were antidromically activated from the contralateral posterior thalamus. A stimulating electrode was moved systematically within an anterior-posterior plane in the thalamus until a point was located where the smallest amount of current antidromically activated the neuron. The antidromic thresholds at each of these lowest threshold points was < or = 30 microA; the mean antidromic threshold was 15.4 +/- 1.0 (SE) microA. Lowest threshold points were found primarily in the posterior thalamic group (Po), zona incerta, and in or near the supraoptic decussation. 2. The recording sites of 47 neurons were marked and recovered. Recording sites were located in the superficial dorsal horn (SDH, n = 15), deep dorsal horn (DDH, n = 31), and ventral horn (n = 1). Recording sites were located across the mediolateral extent of the SDH. Within the DDH, recording sites were concentrated laterally in nucleus proprius and dorsally in the lateral reticulated area. The locations of the recording points confirm previous anatomic descriptions of STT neurons in the cervical enlargement. 3. Cutaneous excitatory receptive fields were restricted to the ipsilateral forepaw or forelimb in 67% (10/15) of the neurons recorded in the SDH and 42% (13/31) of the neurons recorded in the DDH. Neurons having larger, more complex receptive fields were also commonly encountered. Thirty-three percent (5/15) of the neurons recorded in the SDH and 58% (18/31) recorded in the DDH had receptive fields that were often discontinuous and included areas of the ipsilateral shoulder, thorax, and head, including the face. 4. Innocuous and noxious mechanical stimuli were applied to the receptive field of each neuron. Fifty percent (25/50) responded to innocuous mechanical stimuli but responded at higher frequencies to noxious stimuli (wide dynamic range, WDR). Forty-four percent (22/50) responded only to noxious stimuli (high threshold, HT). Six percent (3/50) responded preferentially to innocuous stimuli (low threshold, LT). WDR and HT neurons were recorded in both the SDH and DDH, including nucleus proprius, an area not typically associated with nociceptive transmission at other levels of the cord. Sixty percent (9/15) of the units recorded in the SDH were classified as WDR neurons; the other 40% (6/15) were classified HT. Forty-eight percent (15/31) of the units recorded in the DDH were classified as WDR neurons and 42% (13/31) as HT.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document