Lesions of the posterior commissure disable the vertical neural integrator of the primate oculomotor system

1994 ◽  
Vol 71 (6) ◽  
pp. 2582-2585 ◽  
Author(s):  
A. M. Partsalis ◽  
S. M. Highstein ◽  
A. K. Moschovakis

1. Spontaneous saccades, vestibuloocular responses (VOR), and optokinetic nystagmus were recorded in three squirrel monkeys before and after chemical or electrolytic lesion of the posterior commissure (PC). 2. PC lesions produced abnormal vertical eye movements, in particular, 1) Postsaccadic drifts, and 2) VOR gain reduction and phase advance more pronounced at lower frequencies of sinusoidal head rotation. Horizontal eye movements were much less affected (or normal). 3. We conclude that PC fibers are necessary for conveying the output of the vertical neural integrator to vertical oculomotor-neurons.

2016 ◽  
Vol 9 (2) ◽  
Author(s):  
Kim Wende ◽  
Laetitia Theunissen ◽  
Marcus Missal

Causality is a unique feature of human perception. We present here a behavioral investigation of the influence of physical causality during visual pursuit of object collisions. Pursuit and saccadic eye movements of human subjects were recorded during ocular pursuit of two concurrently launched targets, one that moved according to the laws of Newtonian mechanics (the causal target) and the other one that moved in a physically implausible direction (the non-causal target). We found that anticipation of collision evoked early smooth pursuit decelerations. Saccades to non-causal targets were hypermetric and had latencies longer than saccades to causal targets. In conclusion, before and after a collision of two moving objects the oculomotor system implicitly predicts upcoming physically plausible target trajectories.


1996 ◽  
Vol 76 (4) ◽  
pp. 2522-2535 ◽  
Author(s):  
A. F. Fuchs ◽  
D. Reiner ◽  
M. Pong

1. Our goal was to use behavioral experiments to delimit where in the simian oculomotor system the gain of horizontal saccadic eye movements might be controlled. Our strategy was to change the gain of saccades to visual target steps (called targeting saccades) and to examine whether these changes transferred to other types of saccades. We reduced the gain of targeting saccades by jumping the target backward as a saccade was made so that the saccade appeared to overshoot. After 1,000-1,500 saccades to such backstepping targets, the average overshoot, and therefore the saccadic gain, had decreased substantially. 2. After the gain of targeting saccades had been reduced by 15-22%, several kinds of saccades were tested. Most were elicited by various visual targets. Some were made to jumping targets, which were timed to elicit saccades with longer (delayed saccades) or shorter (express saccades) latencies than normal or to targets that disappeared after a brief exposure (memory-guided saccades). Others were elicited to stationary targets (self-paced saccades) or in pursuit of a smoothly moving target (catchup saccades). Finally, we tested the saccadic fast phases of vestibular and optokinetic nystagmus. 3. Gain reduction of targeting saccades transferred at least partially to all the other types of saccades made to target jumps. The percentage gain transfer was calculated as (gain reduction of test saccades)/(gain reduction of adapted targeting saccades). The average percent transfer to delayed, memory-guided, and express saccades was 96, 88, and 91%, respectively. 4. Monkeys also showed substantial gain transfer to self-paced saccades, which scanned stationary targets. The average percentage gain transfer was 69% in the four animals tested. When two humans performed the same task, there was no transfer at all. These data suggest that saccadic gain adjustment involves different processes in monkeys and humans. 5. The transfer of gain to the catchup saccades of smooth pursuit varied from 41 to 100% across the four monkeys tested. Nevertheless, the average percentage gain transfer for all the animals was 75%. 6. As judged by the amplitude distribution of fast phases before and after adaptation, there was little, if any, saccadic gain transfer to the fast phases of vestibular or optokinetic nystagmus. In 12 of 13 experiments, there was no significant decrease in fast phase amplitude after a gain reduction of targeting saccades (P > 0.1). 7. This study shows that the average percentage gain transfer from targeting to delayed, express, memory-guided, self-paced, and catchup saccades was never < 69%. Although there was substantial transfer to saccades elicited by jumping, stationary, remembered, or slowly moving visual targets, there was relatively little to the saccadelike fast phases of nystagmus. The transfer of saccadic gain to the very short-latency express saccades suggests that adaptation modifies a subcortical locus. Moreover, the major locus must lie only in the premotor pathway for visual saccades, because saccadic gain adaptation is only poorly transferred to the fast phases of vestibular and optokinetic nystagmus.


2002 ◽  
Vol 205 (9) ◽  
pp. 1241-1252 ◽  
Author(s):  
Kerstin A. Fritsches ◽  
N. Justin Marshall

SUMMARYIn response to movements involving a large part of the visual field, the eyes of vertebrates typically show an optokinetic nystagmus, a response in which both eyes are tightly yoked. Using a comparative approach, this study sets out to establish whether fish with independent spontaneous eye movements show independent optokinetic nystagmus in each eye. Two fish with independent spontaneous eye movements, the pipefish Corythoichthyes intestinalisand the sandlance Limnichthyes fasciatus were compared with the butterflyfish Chaetodon rainfordi, which exhibits tightly yoked eye movements. In the butterflyfish a single whole-field stimulus elicits conjugate optokinesis, whereas the sandlance and pipefish show asynchronous optokinetic movements. In a split drum experiment, when both eyes were stimulated in opposite directions with different speeds, both the sandlance and the pipefish compensated independently with each eye. The optokinetic response in the butterflyfish showed some disconjugacy but was generally confused. When one eye was occluded, the seeing eye was capable of driving the occluded eye in both the butterflyfish and the pipefish but not in the sandlance. Monocular occlusion therefore unmasks a link between the two eyes in the pipefish, which is overridden when both eyes receive visual input. The sandlance never showed any correlation between the eyes during optokinesis in all stimulus conditions. This suggests that there are different levels of linkage between the two eyes in the oculomotor system of teleosts, depending on the visual input.


1994 ◽  
Vol 72 (3) ◽  
pp. 1443-1447 ◽  
Author(s):  
D. E. Angelaki ◽  
B. J. Hess

1. The vestibulo-ocular reflex (VOR) was investigated in rhesus monkeys before and after surgical ablation of the cerebellar nodulus and ventral uvula. The lesion resulted in an alteration of the torsional VOR: compensatory eye movements were poor in the low frequency range and the time constant was reduced to values comparable to those of primary semicircular canal afferents. In addition, animals permanently lost their ability to generate torsional optokinetic nystagmus (OKN). 2. The effects of the lesion on the torsional VOR differed from those observed in the horizontal and vertical vestibulo-ocular systems. While the vertical VOR and OKN were unaltered, the horizontal VOR and OKN were characterized by increased time constants and smaller phase leads during low frequency head oscillations. 3. These results suggest that the cerebellar nodulus and/or ventral uvula exert a distinct and specific dynamic control on the torsional vestibulo-ocular and optokinetic reflexes. Such specific effects on the torsional system could reflect a functional segregation of the vestibulo-cerebellum in terms of the controls of torsional versus horizontal and vertical slow phase eye movements.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Talora L. Martin ◽  
Jordan Murray ◽  
Kiran Garg ◽  
Charles Gallagher ◽  
Aasef G. Shaikh ◽  
...  

AbstractWe evaluated the effects of strabismus repair on fixational eye movements (FEMs) and stereopsis recovery in patients with fusion maldevelopment nystagmus (FMN) and patients without nystagmus. Twenty-one patients with strabismus, twelve with FMN and nine without nystagmus, were tested before and after strabismus repair. Eye-movements were recorded during a gaze-holding task under monocular viewing conditions. Fast (fixational saccades and quick phases of nystagmus) and slow (inter-saccadic drifts and slow phases of nystagmus) FEMs and bivariate contour ellipse area (BCEA) were analyzed in the viewing and non-viewing eye. Strabismus repair improved the angle of strabismus in subjects with and without FMN, however patients without nystagmus were more likely to have improvement in stereoacuity. The fixational saccade amplitudes and intersaccadic drift velocities in both eyes decreased after strabismus repair in subjects without nystagmus. The slow phase velocities were higher in patients with FMN compared to inter-saccadic drifts in patients without nystagmus. There was no change in the BCEA after surgery in either group. In patients without nystagmus, the improvement of the binocular function (stereopsis), as well as decreased fixational saccade amplitude and intersaccadic drift velocity, could be due, at least partially, to central adaptive mechanisms rendered possible by surgical realignment of the eyes. The absence of improvement in patients with FMN post strabismus repair likely suggests the lack of such adaptive mechanisms in patients with early onset infantile strabismus. Assessment of fixation eye movement characteristics can be a useful tool to predict functional improvement post strabismus repair.


2002 ◽  
Vol 159 (4) ◽  
pp. 388-396 ◽  
Author(s):  
Peter Winsauer ◽  
Una McCann ◽  
Yuan J. ◽  
Marcus Delatte ◽  
Michael Stevenson ◽  
...  

2021 ◽  
Author(s):  
Nicole X Han ◽  
Puneeth N. Chakravarthula ◽  
Miguel P. Eckstein

Face processing is a fast and efficient process due to its evolutionary and social importance. A majority of people direct their first eye movement to a featureless point just below the eyes that maximizes accuracy in recognizing a person's identity and gender. Yet, the exact properties or features of the face that guide the first eye movements and reduce fixational variability are unknown. Here, we manipulated the presence of the facial features and the spatial configuration of features to investigate their effect on the location and variability of first and second fixations to peripherally presented faces. Results showed that observers can utilize the face outline, individual facial features, and feature spatial configuration to guide the first eye movements to their preferred point of fixation. The eyes have a preferential role in guiding the first eye movements and reducing fixation variability. Eliminating the eyes or altering their position had the greatest influence on the location and variability of fixations and resulted in the largest detriment to face identification performance. The other internal features (nose and mouth) also contribute to reducing fixation variability. A subsequent experiment measuring detection of single features showed that the eyes have the highest detectability (relative to other features) in the visual periphery providing a strong sensory signal to guide the oculomotor system. Together, the results suggest a flexible multiple-cue approach that might be a robust solution to cope with how the varying eccentricities in the real world influence the ability to resolve individual feature properties and the preferential role of the eyes.


2021 ◽  
Author(s):  
Natalia Ladyka-Wojcik ◽  
Zhong-Xu Liu ◽  
Jennifer D. Ryan

Scene construction is a key component of memory recall, navigation, and future imagining, and relies on the medial temporal lobes (MTL). A parallel body of work suggests that eye movements may enable the imagination and construction of scenes, even in the absence of external visual input. There are vast structural and functional connections between regions of the MTL and those of the oculomotor system. However, the directionality of connections between the MTL and oculomotor control regions, and how it relates to scene construction, has not been studied directly in human neuroimaging. In the current study, we used dynamic causal modeling (DCM) to investigate this relationship at a mechanistic level using a scene construction task in which participants' eye movements were either restricted (fixed-viewing) or unrestricted (free-viewing). By omitting external visual input, and by contrasting free- versus fixed- viewing, the directionality of neural connectivity during scene construction could be determined. As opposed to when eye movements were restricted, allowing free viewing during construction of scenes strengthened top-down connections from the MTL to the frontal eye fields, and to lower-level cortical visual processing regions, suppressed bottom-up connections along the visual stream, and enhanced vividness of the constructed scenes. Taken together, these findings provide novel, non-invasive evidence for the causal architecture between the MTL memory system and oculomotor system associated with constructing vivid mental representations of scenes.


1989 ◽  
Vol 1 (1) ◽  
pp. 116-122 ◽  
Author(s):  
R. J. Krauzlis ◽  
S. G. Lisberger

Visual tracking of objects in a noisy environment is a difficult problem that has been solved by the primate oculomotor system, but remains unsolved in robotics. In primates, smooth pursuit eye movements match eye motion to target motion to keep the eye pointed at smoothly moving targets. We have used computer models as a tool to investigate possible computational strategies underlying this behavior. Here, we present a model based upon behavioral data from monkeys. The model emphasizes the variety of visual signals available for pursuit and, in particular, includes a sensitivity to the acceleration of retinal images. The model was designed to replicate the initial eye velocity response observed during pursuit of different target motions. The strength of the model is that it also exhibits a number of emergent properties that are seen in the behavior of both humans and monkeys. This suggests that the elements in the model capture important aspects of the mechanism of visual tracking by the primate smooth pursuit system.


Sign in / Sign up

Export Citation Format

Share Document