Rapid adaptation to Coriolis force perturbations of arm trajectory

1994 ◽  
Vol 72 (1) ◽  
pp. 299-313 ◽  
Author(s):  
J. R. Lackner ◽  
P. Dizio

1. Forward reaching movements made during body rotation generate tangential Coriolis forces that are proportional to the cross product of the angular velocity of rotation and the linear velocity of the arm. Coriolis forces are inertial forces that do not involve mechanical contact. Virtually no constant centrifugal forces will be present in the background when motion of the arm generates transient Coriolis forces if the radius of body rotation is small. 2. We measured the trajectories of arm movements made in darkness to a visual target that was extinguished as movement began. The reaching movements were made prerotation, during rotation at 10 rpm in a fully enclosed rotating room, and postrotation. During testing the subject was seated at the center of the room and pointed radially. Neither visual nor tactile feedback about movement accuracy was present. 3. In experiment 1, subjects reached at a fast or slow rate and their hands made contact with a horizontal surface at the end of the reach. Their initial perrotary movements were highly significantly deviated relative to prerotation in both trajectories and end-points in the direction of the transient Coriolis forces that had been generated during the reaches. Despite the absence of visual and tactile feedback about reaching accuracy, all subjects rapidly regained straight movement trajectories and accurate endpoints. Postrotation, transient errors of opposite sign were present for both trajectories and endpoints. 4. In a second experiment the conditions were identical except that subjects pointed just above the location of the extinguished target so that no surface contact was involved. All subjects showed significant initial perrotation deviations of trajectories and endpoints in the direction of the transient Coriolis forces. With repeated reaches the trajectories, as viewed from above, again became straight, but there was only partial restoration of endpoint accuracy, so that subjects reached in a straight line to the wrong place. Aftereffects of opposite sign were transiently present in the postrotary movements. 5. These observations fail to support current equilibrium point models, both alpha and lambda, of movement control. Such theories would not predict endpoint errors under our experimental conditions, in which the Coriolis force is absent at the beginning and end of a movement. Our results indicate that detailed aspects of movement trajectory are being continuously monitored on the basis of proprioceptive feedback in relation to motor commands. Adaptive compensations can be initiated after one perturbation despite the absence of either visual or tactile feedback about movement trajectory and endpoint error. Moreover, movement trajectory and end-point can be remapped independently.(ABSTRACT TRUNCATED AT 400 WORDS)

1995 ◽  
Vol 74 (4) ◽  
pp. 1787-1792 ◽  
Author(s):  
P. Dizio ◽  
J. R. Lackner

1. Reaching movements made in a rotating room generate Coriolis forces that are directly proportional to the cross product of the room's angular velocity and the arm's linear velocity. Such Coriolis forces are inertial forces not involving mechanical contact with the arm. 2. We measured the trajectories of arm movements made in darkness to a visual target that was extinguished at the onset of each reach. Prerotation subjects pointed with both the right and left arms in alternating sets of eight movements. During rotation at 10 rpm, the subjects reached only with the right arm. Postrotation, the subjects pointed with the left and right arms, starting with the left, in alternating sets of eight movements. 3. The initial perrotary reaching movements of the right arm were highly deviated both in movement path and endpoint relative to the prerotation reaches of the right arm. With additional movements, subjects rapidly regained straight movement paths and accurate endpoints despite the absence of visual or tactile feedback about reaching accuracy. The initial postrotation reaches of the left arm followed straight paths to the wrong endpoint. The initial postrotation reaches of the right arm had paths with mirror image curvature to the initial perrotation reaches of the right arm but went to the correct endpoint. 4. These observations are inconsistent with current equilibrium point models of movement control. Such theories predict accurate reaches under our experimental conditions. Our observations further show independent implementation of movement and posture, as evidenced by transfer of endpoint adaptation to the nonexposed arm without transfer of path adaptation. Endpoint control may occur at a relatively central stage that represents general constraints such as gravitoinertial force background or egocentric direction relative to both arms, and control of path may occur at a more peripheral stage that represents moments of inertia and muscle dynamics unique to each limb. 5. Endpoint and path adaptation occur despite the absence both of mechanical contact cues about the perturbing force and visual or tactile cues about movement accuracy. These findings point to the importance of muscle spindle signals, monitoring of motor commands, and possibly joint and tendon receptors in a detailed trajectory monitoring process. Muscle spindle primary and secondary afferent signals may differentially influence adaptation of movement shape and endpoint, respectively.


2000 ◽  
Vol 83 (6) ◽  
pp. 3230-3240 ◽  
Author(s):  
Joseph V. Cohn ◽  
Paul DiZio ◽  
James R. Lackner

Subjects who are in an enclosed chamber rotating at constant velocity feel physically stationary but make errors when pointing to targets. Reaching paths and endpoints are deviated in the direction of the transient inertial Coriolis forces generated by their arm movements. By contrast, reaching movements made during natural, voluntary torso rotation seem to be accurate, and subjects are unaware of the Coriolis forces generated by their movements. This pattern suggests that the motor plan for reaching movements uses a representation of body motion to prepare compensations for impending self-generated accelerative loads on the arm. If so, stationary subjects who are experiencing illusory self-rotation should make reaching errors when pointing to a target. These errors should be in the direction opposite the Coriolis accelerations their arm movements would generate if they were actually rotating. To determine whether such compensations exist, we had subjects in four experiments make visually open-loop reaches to targets while they were experiencing compelling illusory self-rotation and displacement induced by rotation of a complex, natural visual scene. The paths and endpoints of their initial reaching movements were significantly displaced leftward during counterclockwise illusory rotary displacement and rightward during clockwise illusory self-displacement. Subjects reached in a curvilinear path to the wrong place. These reaching errors were opposite in direction to the Coriolis forces that would have been generated by their arm movements during actual torso rotation. The magnitude of path curvature and endpoint errors increased as the speed of illusory self-rotation increased. In successive reaches, movement paths became straighter and endpoints more accurate despite the absence of visual error feedback or tactile feedback about target location. When subjects were again presented a stationary scene, their initial reaches were indistinguishable from pre-exposure baseline, indicating a total absence of aftereffects. These experiments demonstrate that the nervous system automatically compensates in a context-specific fashion for the Coriolis forces associated with reaching movements.


1998 ◽  
Vol 80 (2) ◽  
pp. 546-553 ◽  
Author(s):  
James R. Lackner ◽  
Paul Dizio

Lackner, James R. and Paul DiZio. Gravitoinertial force background level affects adaptation to Coriolis force perturbations of reaching movements. J. Neurophysiol. 80: 546–553, 1998. We evaluated the combined effects on reaching movements of the transient, movement-dependent Coriolis forces and the static centrifugal forces generated in a rotating environment. Specifically, we assessed the effects of comparable Coriolis force perturbations in different static force backgrounds. Two groups of subjects made reaching movements toward a just-extinguished visual target before rotation began, during 10 rpm counterclockwise rotation, and after rotation ceased. One group was seated on the axis of rotation, the other 2.23 m away. The resultant of gravity and centrifugal force on the hand was 1.0 g for the on-center group during 10 rpm rotation, and 1.031 g for the off-center group because of the 0.25 g centrifugal force present. For both groups, rightward Coriolis forces, ≈0.2 g peak, were generated during voluntary arm movements. The endpoints and paths of the initial per-rotation movements were deviated rightward for both groups by comparable amounts. Within 10 subsequent reaches, the on-center group regained baseline accuracy and straight-line paths; however, even after 40 movements the off-center group had not resumed baseline endpoint accuracy. Mirror-image aftereffects occurred when rotation stopped. These findings demonstrate that manual control is disrupted by transient Coriolis force perturbations and that adaptation can occur even in the absence of visual feedback. An increase, even a small one, in background force level above normal gravity does not affect the size of the reaching errors induced by Coriolis forces nor does it affect the rate of reacquiring straight reaching paths; however, it does hinder restoration of reaching accuracy.


2019 ◽  
Vol 121 (6) ◽  
pp. 2042-2060 ◽  
Author(s):  
Avijit Bakshi ◽  
Paul DiZio ◽  
James R. Lackner

In the companion paper (Bakshi A, DiZio P, Lackner JR. J Neurophysiol. In press, 2019), we reported how voluntary forward-backward sway in a rotating room generated medial-lateral Coriolis forces that initially deviated intended body sway paths. Pure fore-aft sway was gradually restored over per-rotation trials, and a negative aftereffect occurred during postrotation sway. Force plate recordings showed that subjects learned to compensate for the Coriolis forces by executing a bimodal torque, the distribution of which was asymmetric across the two legs and of opposite sign for forward vs. backward sway. To explain these results, we have developed an asymmetric, nonparallel-leg, inverted pendulum model to characterize upright balance control in two dimensions. Fore-aft and medial-lateral sway amplitudes can be biomechanically coupled or independent. Biomechanical coupling occurs when Coriolis forces orthogonal to the direction of movement perturb sway about the ankles. The model includes a mechanism for alternating engagement/disengagement of each leg and for asymmetric drive to the ankles to achieve adaptation to Coriolis force-induced two-dimensional sway. The model predicts the adaptive control underlying the adaptation of voluntary postural sway to Coriolis forces. A stability analysis of the model generates parameter values that match those measured experimentally, and the parameterized model simulations reproduce the experimentally observed sway trajectories. NEW & NOTEWORTHY This paper presents a novel nonparallel leg model of postural control that correctly predicts the perturbations of voluntary sway that occur in a rotating environment and the adaptive changes that occur to restore faithful movement trajectories. This engaged leg model (ELM) predicts the asymmetries in force distribution and their patterns between the two legs to restore accurate movement trajectories. ELM has clinical relevance for pathologies that generate postural asymmetries and for altered gravitoinertial force conditions.


2003 ◽  
Vol 89 (1) ◽  
pp. 276-289 ◽  
Author(s):  
Pascale Pigeon ◽  
Simone B. Bortolami ◽  
Paul DiZio ◽  
James R. Lackner

When reaching movements involve simultaneous trunk rotation, additional interaction torques are generated on the arm that are absent when the trunk is stable. To explore whether the CNS compensates for such self-generated interaction torques, we recorded hand trajectories in reaching tasks involving various amplitudes and velocities of arm extension and trunk rotation. Subjects pointed to three targets on a surface slightly above waist level. Two of the target locations were chosen so that a similar arm configuration relative to the trunk would be required for reaching to them, one of these targets requiring substantial trunk rotation, the other very little. Significant trunk rotation was necessary to reach the third target, but the arm's radial distance to the body remained virtually unchanged. Subjects reached at two speeds—a natural pace (slow) and rapidly (fast)—under normal lighting and in total darkness. Trunk angular velocity and finger velocity relative to the trunk were higher in the fast conditions but were not affected by the presence or absence of vision. Peak trunk velocity increased with increasing trunk rotation up to a maximum of 200°/s. In slow movements, peak finger velocity relative to the trunk was smaller when trunk rotation was necessary to reach the targets. In fast movements, peak finger velocity was ∼1.7 m/s for all targets. Finger trajectories were more curved when reaching movements involved substantial trunk rotation; however, the terminal errors and the maximal deviation of the trajectory from a straight line were comparable in slow and fast movements. This pattern indicates that the larger Coriolis, centripetal, and inertial interaction torques generated during rapid reaches were compensated by additional joint torques. Trajectory characteristics did not vary with the presence or absence of vision, indicating that visual feedback was unnecessary for anticipatory compensations. In all reaches involving trunk rotation, the finger movement generally occurred entirely during the trunk movement, indicating that the CNS did not minimize Coriolis forces incumbent on trunk rotation by sequencing the arm and trunk motions into a turn followed by a reach. A simplified model of the arm/trunk system revealed that additional interaction torques generated on the arm during voluntary turning and reaching were equivalent to ≤1.8 g (1 g = 9.81 m/s2) of external force at the elbow but did not degrade performance. In slow-rotation room studies involving reaching movements during passive rotation, Coriolis forces as small as 0.2 g greatly deflect movement trajectories and endpoints. We conclude that compensatory motor innervations are engaged in a predictive fashion to counteract impending self-generated interaction torques during voluntary reaching movements.


1997 ◽  
Vol 7 (4) ◽  
pp. 303-310
Author(s):  
James R. Lackner ◽  
Paul DiZio

The reafference model has frequently been used to explain spatial constancy during eye and head movements. We have found that its basic concepts also form part of the information processing necessary for the control and recalibration of reaching movements. Reaching was studied in a novel force environment–a rotating room that creates centripetal forces of the type that could someday substitute for gravity in space flight, and Coriolis forces which are side effects of rotation. We found that inertial, noncontacting Coriolis forces deviate the path and endpoint of reaching movements, a finding that shows the inadequacy of equilibrium position models of movement control. Repeated movements in the rotating room quickly lead to normal movement patterns and to a failure to perceive the perturbing forces. The first movements made after rotation stops, without Coriolis forces present, show mirror-image deviations and evoke perception of a perturbing force even though none is present. These patterns of sensorimotor control and adaptation can largely be explained on the basis of comparisons of efference copy, reafferent muscle spindle, and cutaneous mechanoreceptor signals. We also describe experiments on human iocomotion using an apparatus similar to that which Mittelstaedt used to study the optomotor response of the Eristalis fly. These results show that the reafference principle relates as well to the perception of the forces acting on and exerted by the body during voluntary locomotion.


2007 ◽  
Vol 37 (9) ◽  
pp. 2316-2330 ◽  
Author(s):  
Peter Jan van Leeuwen

Abstract The propagation velocity and propagation mechanism for vortices on a β plane are determined for a reduced-gravity model by integrating the momentum equations over the β plane. Isolated vortices, vortices in a background current, and initial vortex propagation from rest are studied. The propagation mechanism for isolated anticyclones as well as cyclones, which has been lacking up to now, is presented. It is shown that, to first order, the vortex moves to generate a Coriolis force on the mass anomaly of the vortex to compensate for the force on the vortex due to the variation of the Coriolis parameter. Only the mass anomaly of the vortex is of importance, because the Coriolis force due to the motion of the bulk of the layer moving with the vortex is almost fully compensated by the Coriolis force on the motion of the exterior flow. Because the mass anomaly of a cyclone is negative the force and acceleration have opposite sign. The role of dipolar structures in steadily moving vortices is discussed, and it is shown that their overall structure is fixed by the steady westward motion of the mass anomaly. Furthermore, it is shown that reduced-gravity vortices are not advected with a background flow. The reason for this behavior is that the background flow changes the ambient vorticity gradient such that the vortex obtains an extra self-propagation term that exactly cancels the advection by the background flow. Last, it is shown that a vortex initially at rest will accelerate equatorward first, after which a westward motion is generated. This result is independent of the sign of the vortex.


2003 ◽  
Vol 12 (5-6) ◽  
pp. 291-299
Author(s):  
Paul DiZio ◽  
James R. Lackner

As a countermeasure to the debilitating physiological effects of weightlessness, astronauts could live continuously in an artificial gravity environment created by slow rotation of an entire spacecraft or be exposed to brief daily "doses" in a short radius centrifuge housed within a non-rotating spacecraft. A potential drawback to both approaches is that head movements made during rotation may be disorienting and nauseogenic. These side effects are more severe at higher rotation rates, especially upon first exposure. Head movements during rotation generate aberrant vestibular stimulation and Coriolis force perturbations of the head-neck motor system. This article reviews our progress toward distinguishing vestibular and motor factors in side effects of rotation, and presents new data concerning the rates of rotation up to which adaptation is possible. We have studied subjects pointing to targets during constant velocity rotation, because these movements generate Coriolis motor perturbations of the arm but do not involve unusual vestibular stimulation. Initially, reaching paths and endpoints are deviated in the direction of the transient lateral Coriolis forces generated. With practice, subjects soon move in straighter paths and land on target once more. If sight of the arm is permitted, adaptation is more rapid than in darkness. Initial arm movement trajectory and endpoint deviations are proportional to Coriolis force magnitude over a range of rotation speeds from 5 to 20 rpm, and there is rapid, complete motor adaptation at all speeds. These new results indicate that motor adaptation to high rotation rates is possible. Coriolis force perturbations of head movements also occur in a rotating environment but adaptation gradually develops over the course of many head movements.


2004 ◽  
Vol 215 ◽  
pp. 404-413
Author(s):  
Rich Townsend

In this contribution, I will examine the interaction between stellar rotation and pulsation. I begin with a brief review of the non-rotating case, emphasizing the character of pulsations as azimuthally-propagating waves. I then go on to discuss how these waves are modified under the influence of the centrifugal and Coriolis forces. Through simple arguments, I outline the conditions under which each force can become significant in determining the wave dynamics. Particular attention is paid to the Coriolis force, since it is responsible for the formation of a waveguide, which confines the pulsation to a narrow band centered on the stellar equator. Using the example of a prograde sectoral pulsation mode, I explain the basic physical principles underlying this trapping.The Coriolis force is also responsible for the existence of Rossby waves, which are not found in non-rotating stars. I demonstrate how these waves may be understood in terms of a conservation law for angular momentum, and review their most important characteristics. I then examine how rotation modifies the frequencies of pulsation, and explain how observations of such modifications can provide information regarding a star's rotation rate. To conclude, I focus on the converse of the pulsation-rotation interaction: how the transport of angular momentum by pulsation might be important in determining the evolution of a star's rotation profile.


Sign in / Sign up

Export Citation Format

Share Document