Effect of muscimol microinjections into the prepositus hypoglossi and the medial vestibular nuclei on cat eye movements

1994 ◽  
Vol 72 (2) ◽  
pp. 785-802 ◽  
Author(s):  
P. Mettens ◽  
E. Godaux ◽  
G. Cheron ◽  
H. L. Galiana

1. For horizontal eye movements, previous observations led to the hypothesis that the legendary neural integrator necessary for correct gaze holding, adequate vestibuloocular reflex (VOR), and optokinetic nystagmus, was located in the region of the complex formed by the nucleus prepositus hypoglossi (NPH) and the medial vestibular nucleus (MVN). 2. The aim of the present study was to test the respective contributions of the NPH, of the rostral part of the MVN, which contains most second-order vestibular neurons, and of the central part of the MVN to the horizontal integrator. 3. An injection of muscimol was used to inactivate each of these three zones in the cat's brain. Muscimol is a gamma-aminobutyric acid (GABA) agonist. By binding to GABAA receptors, it induces a hyperpolarization of the neurons that nullifies their activity. Muscimol was injected into the brain stem of the alert cat through a micropipette by an air pressure system. 4. The search coil technique was used to record spontaneous eye movements and the VOR induced by rotating a turntable at a constant velocity. VOR was analyzed by a new method: transient analysis of vestibular nystagmus. 5. A unilateral injection of muscimol into the NPH induced a bilateral gaze-holding failure: saccades were followed by a centripetal postsaccadic drift. A vestibular imbalance was also present but it was moderate and variable. The VOR responses were distorted drastically. Through transient analysis of vestibular nystagmus, that distortion was revealed to be due more to a failure of the neural integrator than to an alteration of the vestibular input to the neural integrator. The responses to a rotation either toward the injected side or in the opposite direction were asymmetrical. The direction of that asymmetry was variable. 6. A unilateral injection of muscimol into the rostral part of the MVN caused a vestibular imbalance: in complete darkness, a nystagmus appeared, whose linear slow phases were directed toward the side of injection. 7. A unilateral injection of muscimol into the central part of the MVN induced a syndrome where a severe bilateral gaze-holding failure was combined with a vestibular imbalance. In the light, saccades were followed by a bilateral centripetal postsaccadic drift. In complete darkness, a nystagmus was observed, whose curved slow phases were directed towards the side of injection. The VOR responses were distorted drastically. Here again, that distortion was revealed by our analysis to be due more to a failure of the neural integrator than to an alteration of the vestibular input to the neural integrator.(ABSTRACT TRUNCATED AT 400 WORDS)

2003 ◽  
Vol 90 (2) ◽  
pp. 739-754 ◽  
Author(s):  
Pierre A. Sylvestre ◽  
Julia T. L. Choi ◽  
Kathleen E. Cullen

Burst-tonic (BT) neurons in the prepositus hypoglossi and adjacent medial vestibular nuclei are important elements of the neural integrator for horizontal eye movements. While the metrics of their discharges have been studied during conjugate saccades (where the eyes rotate with similar dynamics), their role during disjunctive saccades (where the eyes rotate with markedly different dynamics to account for differences in depths between saccadic targets) remains completely unexplored. In this report, we provide the first detailed quantification of the discharge dynamics of BT neurons during conjugate saccades, disjunctive saccades, and disjunctive fixation. We show that these neurons carry both significant eye position and eye velocity-related signals during conjugate saccades as well as smaller, yet important, “slide” and eye acceleration terms. Further, we demonstrate that a majority of BT neurons, during disjunctive fixation and disjunctive saccades, preferentially encode the position and the velocity of a single eye; only few BT neurons equally encode the movements of both eyes (i.e., have conjugate sensitivities). We argue that BT neurons in the nucleus prepositus hypoglossi/medial vestibular nucleus play an important role in the generation of unequal eye movements during disjunctive saccades, and carry appropriate information to shape the saccadic discharges of the abducens nucleus neurons to which they project.


1992 ◽  
Vol 68 (1) ◽  
pp. 319-332 ◽  
Author(s):  
J. L. McFarland ◽  
A. F. Fuchs

1. Monkeys were trained to perform a variety of horizontal eye tracking tasks designed to reveal possible eye movement and vestibular sensitivities of neurons in the medulla. To test eye movement sensitivity, we required stationary monkeys to track a small spot that moved horizontally. To test vestibular sensitivity, we rotated the monkeys about a vertical axis and required them to fixate a target rotating with them to suppress the vestibuloocular reflex (VOR). 2. All of the 100 units described in our study were recorded from regions of the medulla that were prominently labeled after injections of horseradish peroxidase into the abducens nucleus. These regions include the nucleus prepositus hypoglossi (NPH), the medial vestibular nucleus (MVN), and their common border (the “marginal zone”). We report here the activities of three different types of neurons recorded in these regions. 3. Two types responded only during eye movements per se. Their firing rates increased with eye position; 86% had ipsilateral “on” directions. Almost three quarters (73%) of these medullary neurons exhibited a burst-tonic discharge pattern that is qualitatively similar to that of abducens motoneurons. There were, however, quantitative differences in that these medullary burst-position neurons were less sensitive to eye position than were abducens motoneurons and often did not pause completely for saccades in the off direction. The burst of medullary burst position neurons preceded the saccade by an average of 7.6 +/- 1.7 (SD) ms and, on average, lasted the duration of the saccade. The number of spikes in the burst was well correlated with saccade size. The second type of eye movement neuron displayed either no discernible burst or an inconsistent one for on-direction saccades and will be referred to as medullary position neurons. Neither the burst-position nor the position neurons responded when the animals suppressed the VOR; hence, they displayed no vestibular sensitivity. 4. The third type of neuron was sensitive to both eye movement and vestibular stimulation. These neurons increased their firing rates during horizontal head rotation and smooth pursuit eye movements in the same direction; most (76%) preferred ipsilateral head and eye movements. Their firing rates were approximately in phase with eye velocity during sinusoidal smooth pursuit and with head velocity during VOR suppression; on average, their eye velocity sensitivity was 50% greater than their vestibular sensitivity. Sixty percent of these eye/head velocity cells were also sensitive to eye position. 5. The NPH/MVN region contains many neurons that could provide an eye position signal to abducens neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


Author(s):  
R. John Leigh ◽  
David S. Zee

This chapter reviews the neural network that temporally integrates premotor, velocity-coded signals to achieve tonic contraction of the extraocular muscles to hold the eyes at an eccentric position in the orbits. The mechanical properties of the eye and its supporting tissues are quantified and related to the pulse-slide-step neural command for a saccadic change in eye position. The anatomical substrate and neuropharmacology of the neural integrator is reviewed, including nucleus prepositus hypoglossi, interstitial nucleus of Cajal and cerebellum. Mathematical and animal models for the neural integrator are discussed, addressing points about how a leaky or unstable integrator may arise. Clinical and laboratory evaluation of gaze holding is summarized. Effects of experimentally inactivating the neural integrator are compared with clinical disorders affecting gaze holding, including a discussion of the pathogenesis of gaze-evoked nystagmus and Alexander’s law. Compensatory mechanisms for a leaky neural integrator are discussed, including centripetal, rebound, and gaze-evoked nystagmus.


1987 ◽  
Vol 57 (5) ◽  
pp. 1383-1409 ◽  
Author(s):  
S. C. Cannon ◽  
D. A. Robinson

Eye movement were recorded from four juvenile rhesus monkeys (Macaca mulatta) before and after the injection of neurotoxins (kainate or ibotenate) in the region of the medial vestibular and prepositus hypoglossi nuclei, an area hypothesized to be the locus of the neural integrator for horizontal eye movement commands. Eye movements were measured in the head-restrained animal by the magnetic field/eye-coil method. The monkeys were trained to follow visual targets. A chamber implanted over a trephine hole in the skull permitted recordings to be made in the brain stem with metal microelectrodes. The abducens nuclei were located and used as a reference point for subsequent neurotoxin injections through cannulas. The effects of these lesions on fixation, vestibuloocular and optokinetic responses, and smooth pursuit were compared with predicted oculomotor anomalies caused by a loss of the neural integrator. Kainate and ibotenate did not create permanent lesions in this region of the brain stem. All the eye movements returned toward normal over the course of a few days to 2 wk. Histological examination revealed that the cannula tips were mainly located between the vestibular and prepositus hypoglossi nuclei, in their rostral 2 mm, bordered rostrally by the abducens nuclei. Dense gliosis clearly demarcated the cannula tracks, but for most injections there were no surrounding regions of neuronal loss. Thus the eye movement disorders were due to a reversible, not a permanent, lesion. The time constant for the neural integrator was determined from the velocity of the centripetal drift of the eyes just after an eccentric saccade in total darkness. For intact animals this time constant was greater than 20 s. Shortly after bilateral injections of neurotoxin, the time constant began to decrease and reached a minimum of 200 ms; every horizontal saccade was followed by a rapid centripetal drift with a time constant of approximately 200 ms. For vertical eye movements, in this acute phase, the time constant was approximately 2.5 s. The vestibuloocular reflex (VOR) was drastically changed by the lesions. A step of constant head velocity in total darkness evoked a step change in eye position rather than in velocity. In the absence of the neural integrator, the step velocity command from the canal afferents was not integrated to produce a ramp of eye position (normal slow phases); rather this signal was relayed directly to the motoneurons and caused a step in eye position. The per- and postrotatory decay of the head velocity signal was decreased to 5-6 s indicating that vestibular velocity storage was also impaired.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 81 (2) ◽  
pp. 668-681 ◽  
Author(s):  
Chris R. S. Kaneko

Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. II. Pursuit, vestibular, and optokinetic responses. The eyes are moved by a combination of neural commands that code eye velocity and eye position. The eye position signal is supposed to be derived from velocity-coded command signals by mathematical integration via a single oculomotor neural integrator. For horizontal eye movements, the neural integrator is thought to reside in the rostral nucleus prepositus hypoglossi (nph) and project directly to the abducens nuclei. In a previous study, permanent, serial ibotenic acid lesions of the nph in three rhesus macaques compromised the neural integrator for fixation but saccades were not affected. In the present study, to determine further whether the nph is the neural substrate for a single oculomotor neural integrator, the effects of those lesions on smooth pursuit, the vestibulo-ocular reflex (VOR), vestibular nystagmus (VN), and optokinetic nystagmus (OKN) are documented. The lesions were correlated with long-lasting deficits in eye movements, indicated most clearly by the animals’ inability to maintain steady gaze in the dark. However, smooth pursuit and sinusoidal VOR in the dark, like the saccades in the previous study, were affected minimally. The gain of horizontal smooth pursuit (eye movement/target movement) decreased slightly (<25%) and phase lead increased slightly for all frequencies (0.3–1.0 Hz, ±10° target tracking), most noticeably for higher frequencies (0.8–0.7 and ∼20° for 1.0-Hz tracking). Vertical smooth pursuit was not affected significantly. Surprisingly, horizontal sinusoidal VOR gain and phase also were not affected significantly. Lesions had complex effects on both VN and OKN. The plateau of per- and postrotatory VN was shortened substantially (∼50%), whereas the initial response and the time constant of decay decreased slightly. The initial OKN response also decreased slightly, and the charging phase was prolonged transiently then recovered to below normal levels like the VN time constant. Maximum steady-state, slow eye velocity of OKN decreased progressively by ∼30% over the course of the lesions. These results support the previous conclusion that the oculomotor neural integrator is not a single neural entity and that the mathematical integrative function for different oculomotor subsystems is most likely distributed among a number of nuclei. They also show that the nph apparently is not involved in integrating smooth pursuit signals and that lesions of the nph can fractionate the VOR and nystagmic responses to adequate stimuli.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Talora L. Martin ◽  
Jordan Murray ◽  
Kiran Garg ◽  
Charles Gallagher ◽  
Aasef G. Shaikh ◽  
...  

AbstractWe evaluated the effects of strabismus repair on fixational eye movements (FEMs) and stereopsis recovery in patients with fusion maldevelopment nystagmus (FMN) and patients without nystagmus. Twenty-one patients with strabismus, twelve with FMN and nine without nystagmus, were tested before and after strabismus repair. Eye-movements were recorded during a gaze-holding task under monocular viewing conditions. Fast (fixational saccades and quick phases of nystagmus) and slow (inter-saccadic drifts and slow phases of nystagmus) FEMs and bivariate contour ellipse area (BCEA) were analyzed in the viewing and non-viewing eye. Strabismus repair improved the angle of strabismus in subjects with and without FMN, however patients without nystagmus were more likely to have improvement in stereoacuity. The fixational saccade amplitudes and intersaccadic drift velocities in both eyes decreased after strabismus repair in subjects without nystagmus. The slow phase velocities were higher in patients with FMN compared to inter-saccadic drifts in patients without nystagmus. There was no change in the BCEA after surgery in either group. In patients without nystagmus, the improvement of the binocular function (stereopsis), as well as decreased fixational saccade amplitude and intersaccadic drift velocity, could be due, at least partially, to central adaptive mechanisms rendered possible by surgical realignment of the eyes. The absence of improvement in patients with FMN post strabismus repair likely suggests the lack of such adaptive mechanisms in patients with early onset infantile strabismus. Assessment of fixation eye movement characteristics can be a useful tool to predict functional improvement post strabismus repair.


1993 ◽  
Vol 69 (3) ◽  
pp. 965-979 ◽  
Author(s):  
K. Hepp ◽  
A. J. Van Opstal ◽  
D. Straumann ◽  
B. J. Hess ◽  
V. Henn

1. Although the eye has three rotational degrees of freedom, eye positions, during fixations, saccades, and smooth pursuit, with the head stationary and upright, are constrained to a plane by ListingR's law. We investigated whether Listing's law for rapid eye movements is implemented at the level of the deeper layers of the superior colliculus (SC). 2. In three alert rhesus monkeys we tested whether the saccadic motor map of the SC is two dimensional, representing oculocentric target vectors (the vector or V-model), or three dimensional, representing the coordinates of the rotation of the eye from initial to final position (the quaternion or Q-model). 3. Monkeys made spontaneous saccadic eye movements both in the light and in the dark. They were also rotated about various axes to evoke quick phases of vestibular nystagmus, which have three degrees of freedom. Eye positions were measured in three dimensions with the magnetic search coil technique. 4. While the monkey made spontaneous eye movements, we electrically stimulated the deeper layers of the SC and elicited saccades from a wide range of initial positions. According to the Q-model, the torsional component of eye position after stimulation should be uniquely related to saccade onset position. However, stimulation at 110 sites induced no eye torsion, in line with the prediction of the V-model. 5. Activity of saccade-related burst neurons in the deeper layers of the SC was analyzed during rapid eye movements in three dimensions. No systematic eye-position dependence of the movement fields, as predicted by the Q-model, could be detected for these cells. Instead, the data fitted closely the predictions made by the V-model. 6. In two monkeys, both SC were reversibly inactivated by symmetrical bilateral injections of muscimol. The frequency of spontaneous saccades in the light decreased dramatically. Although the remaining spontaneous saccades were slow, Listing's law was still obeyed, both during fixations and saccadic gaze shifts. In the dark, vestibularly elicited fast phases of nystagmus could still be generated in three dimensions. Although the fastest quick phases of horizontal and vertical nystagmus were slower by about a factor of 1.5, those of torsional quick phases were unaffected. 7. On the basis of the electrical stimulation data and the properties revealed by the movement field analysis, we conclude that the collicular motor map is two dimensional. The reversible inactivation results suggest that the SC is not the site where three-dimensional fast phases of vestibular nystagmus are generated.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 82 (5) ◽  
pp. 2612-2632 ◽  
Author(s):  
Pierre A. Sylvestre ◽  
Kathleen E. Cullen

The mechanics of the eyeball and its surrounding tissues, which together form the oculomotor plant, have been shown to be the same for smooth pursuit and saccadic eye movements. Hence it was postulated that similar signals would be carried by motoneurons during slow and rapid eye movements. In the present study, we directly addressed this proposal by determining which eye movement–based models best describe the discharge dynamics of primate abducens neurons during a variety of eye movement behaviors. We first characterized abducens neuron spike trains, as has been classically done, during fixation and sinusoidal smooth pursuit. We then systematically analyzed the discharge dynamics of abducens neurons during and following saccades, during step-ramp pursuit and during high velocity slow-phase vestibular nystagmus. We found that the commonly utilized first-order description of abducens neuron firing rates (FR = b + kE + rE˙, where FR is firing rate, E and E˙ are eye position and velocity, respectively, and b, k, and r are constants) provided an adequate model of neuronal activity during saccades, smooth pursuit, and slow phase vestibular nystagmus. However, the use of a second-order model, which included an exponentially decaying term or “slide” (FR = b + kE + rE˙ + uË − c[Formula: see text]), notably improved our ability to describe neuronal activity when the eye was moving and also enabled us to model abducens neuron discharges during the postsaccadic interval. We also found that, for a given model, a single set of parameters could not be used to describe neuronal firing rates during both slow and rapid eye movements. Specifically, the eye velocity and position coefficients ( r and k in the above models, respectively) consistently decreased as a function of the mean (and peak) eye velocity that was generated. In contrast, the bias ( b, firing rate when looking straight ahead) invariably increased with eye velocity. Although these trends are likely to reflect, in part, nonlinearities that are intrinsic to the extraocular muscles, we propose that these results can also be explained by considering the time-varying resistance to movement that is generated by the antagonist muscle. We conclude that to create realistic and meaningful models of the neural control of horizontal eye movements, it is essential to consider the activation of the antagonist, as well as agonist motoneuron pools.


1966 ◽  
Vol 44 (2) ◽  
pp. 263-274
Author(s):  
G. A. HORRIDGE

1. A crab in an otherwise dark room will stabilize its eye position by reference to a single small light, so long as the illumination at the eye exceeds about 0.0003 lux. 2. The eye movements follow the movements of the light. 3. Responses to a light moving in a horizontal plane resemble those to a striped drum, but at lower percentage following. 4. Apparent motion is an effective stimulus; with intermittent light the response is reduced. If there is a period of complete darkness after the first light the subsequent movement, when the second light comes on, is slower for longer dark periods. 5. The crab learns, after some repetitions, to discriminate between a continuous light and an intermittent one, as shown by its eventually stabilizing them at different points on its retina.


1989 ◽  
Vol 62 (1) ◽  
pp. 70-81 ◽  
Author(s):  
P. D. Gamlin ◽  
J. W. Gnadt ◽  
L. E. Mays

1. Single-unit recording studies in alert Rhesus monkeys characterized the vergence signal carried by abducens internuclear neurons. These cells were identified by antidromic activation and the collision of spontaneous with antidromic action potentials. The behavior of abducens internuclear neurons during vergence was compared with that of horizontal burst-tonic fibers in the medial longitudinal fasciculus (MLF) and to that of a large sample of unidentified abducens cells (presumably both motoneurons and internuclear neurons). 2. The results indicate that abducens internuclear neurons and lateral rectus motoneurons behave similarly during vergence eye movements: the majority of both groups of cells decrease their firing rate for convergence eye movements: a minority show no change for vergence. This finding is strongly supported by recordings of horizontal burst-tonic fibers in the MLF, the majority of which decrease their activity significantly for convergence eye movements. 3. These findings indicate that a net inappropriate vergence signal is sent to medial rectus motoneurons via the abducens internuclear pathway. Because medial rectus motoneurons increase their activity appropriately during symmetrical convergence, this inappropriate MLF signal must be overcome by a more potent direct vergence input. 4. Overall, both abducens internuclear neurons and lateral rectus motoneurons decrease their activity for convergence less than would be expected based on their conjugate gain. This implies that some degree of co-contraction of the lateral and medial rectus muscles occurs during convergence eye movements. 5. Some horizontal burst-tonic MLF fibers decrease their activity more for convergence than any recorded abducens neuron. These fibers may arise from cells in the nucleus prepositus hypoglossi or vestibular nuclei.


Sign in / Sign up

Export Citation Format

Share Document