Loss of the neural integrator of the oculomotor system from brain stem lesions in monkey

1987 ◽  
Vol 57 (5) ◽  
pp. 1383-1409 ◽  
Author(s):  
S. C. Cannon ◽  
D. A. Robinson

Eye movement were recorded from four juvenile rhesus monkeys (Macaca mulatta) before and after the injection of neurotoxins (kainate or ibotenate) in the region of the medial vestibular and prepositus hypoglossi nuclei, an area hypothesized to be the locus of the neural integrator for horizontal eye movement commands. Eye movements were measured in the head-restrained animal by the magnetic field/eye-coil method. The monkeys were trained to follow visual targets. A chamber implanted over a trephine hole in the skull permitted recordings to be made in the brain stem with metal microelectrodes. The abducens nuclei were located and used as a reference point for subsequent neurotoxin injections through cannulas. The effects of these lesions on fixation, vestibuloocular and optokinetic responses, and smooth pursuit were compared with predicted oculomotor anomalies caused by a loss of the neural integrator. Kainate and ibotenate did not create permanent lesions in this region of the brain stem. All the eye movements returned toward normal over the course of a few days to 2 wk. Histological examination revealed that the cannula tips were mainly located between the vestibular and prepositus hypoglossi nuclei, in their rostral 2 mm, bordered rostrally by the abducens nuclei. Dense gliosis clearly demarcated the cannula tracks, but for most injections there were no surrounding regions of neuronal loss. Thus the eye movement disorders were due to a reversible, not a permanent, lesion. The time constant for the neural integrator was determined from the velocity of the centripetal drift of the eyes just after an eccentric saccade in total darkness. For intact animals this time constant was greater than 20 s. Shortly after bilateral injections of neurotoxin, the time constant began to decrease and reached a minimum of 200 ms; every horizontal saccade was followed by a rapid centripetal drift with a time constant of approximately 200 ms. For vertical eye movements, in this acute phase, the time constant was approximately 2.5 s. The vestibuloocular reflex (VOR) was drastically changed by the lesions. A step of constant head velocity in total darkness evoked a step change in eye position rather than in velocity. In the absence of the neural integrator, the step velocity command from the canal afferents was not integrated to produce a ramp of eye position (normal slow phases); rather this signal was relayed directly to the motoneurons and caused a step in eye position. The per- and postrotatory decay of the head velocity signal was decreased to 5-6 s indicating that vestibular velocity storage was also impaired.(ABSTRACT TRUNCATED AT 400 WORDS)

1992 ◽  
Vol 68 (1) ◽  
pp. 319-332 ◽  
Author(s):  
J. L. McFarland ◽  
A. F. Fuchs

1. Monkeys were trained to perform a variety of horizontal eye tracking tasks designed to reveal possible eye movement and vestibular sensitivities of neurons in the medulla. To test eye movement sensitivity, we required stationary monkeys to track a small spot that moved horizontally. To test vestibular sensitivity, we rotated the monkeys about a vertical axis and required them to fixate a target rotating with them to suppress the vestibuloocular reflex (VOR). 2. All of the 100 units described in our study were recorded from regions of the medulla that were prominently labeled after injections of horseradish peroxidase into the abducens nucleus. These regions include the nucleus prepositus hypoglossi (NPH), the medial vestibular nucleus (MVN), and their common border (the “marginal zone”). We report here the activities of three different types of neurons recorded in these regions. 3. Two types responded only during eye movements per se. Their firing rates increased with eye position; 86% had ipsilateral “on” directions. Almost three quarters (73%) of these medullary neurons exhibited a burst-tonic discharge pattern that is qualitatively similar to that of abducens motoneurons. There were, however, quantitative differences in that these medullary burst-position neurons were less sensitive to eye position than were abducens motoneurons and often did not pause completely for saccades in the off direction. The burst of medullary burst position neurons preceded the saccade by an average of 7.6 +/- 1.7 (SD) ms and, on average, lasted the duration of the saccade. The number of spikes in the burst was well correlated with saccade size. The second type of eye movement neuron displayed either no discernible burst or an inconsistent one for on-direction saccades and will be referred to as medullary position neurons. Neither the burst-position nor the position neurons responded when the animals suppressed the VOR; hence, they displayed no vestibular sensitivity. 4. The third type of neuron was sensitive to both eye movement and vestibular stimulation. These neurons increased their firing rates during horizontal head rotation and smooth pursuit eye movements in the same direction; most (76%) preferred ipsilateral head and eye movements. Their firing rates were approximately in phase with eye velocity during sinusoidal smooth pursuit and with head velocity during VOR suppression; on average, their eye velocity sensitivity was 50% greater than their vestibular sensitivity. Sixty percent of these eye/head velocity cells were also sensitive to eye position. 5. The NPH/MVN region contains many neurons that could provide an eye position signal to abducens neurons.(ABSTRACT TRUNCATED AT 400 WORDS)


1999 ◽  
Vol 81 (2) ◽  
pp. 668-681 ◽  
Author(s):  
Chris R. S. Kaneko

Eye movement deficits following ibotenic acid lesions of the nucleus prepositus hypoglossi in monkeys. II. Pursuit, vestibular, and optokinetic responses. The eyes are moved by a combination of neural commands that code eye velocity and eye position. The eye position signal is supposed to be derived from velocity-coded command signals by mathematical integration via a single oculomotor neural integrator. For horizontal eye movements, the neural integrator is thought to reside in the rostral nucleus prepositus hypoglossi (nph) and project directly to the abducens nuclei. In a previous study, permanent, serial ibotenic acid lesions of the nph in three rhesus macaques compromised the neural integrator for fixation but saccades were not affected. In the present study, to determine further whether the nph is the neural substrate for a single oculomotor neural integrator, the effects of those lesions on smooth pursuit, the vestibulo-ocular reflex (VOR), vestibular nystagmus (VN), and optokinetic nystagmus (OKN) are documented. The lesions were correlated with long-lasting deficits in eye movements, indicated most clearly by the animals’ inability to maintain steady gaze in the dark. However, smooth pursuit and sinusoidal VOR in the dark, like the saccades in the previous study, were affected minimally. The gain of horizontal smooth pursuit (eye movement/target movement) decreased slightly (<25%) and phase lead increased slightly for all frequencies (0.3–1.0 Hz, ±10° target tracking), most noticeably for higher frequencies (0.8–0.7 and ∼20° for 1.0-Hz tracking). Vertical smooth pursuit was not affected significantly. Surprisingly, horizontal sinusoidal VOR gain and phase also were not affected significantly. Lesions had complex effects on both VN and OKN. The plateau of per- and postrotatory VN was shortened substantially (∼50%), whereas the initial response and the time constant of decay decreased slightly. The initial OKN response also decreased slightly, and the charging phase was prolonged transiently then recovered to below normal levels like the VN time constant. Maximum steady-state, slow eye velocity of OKN decreased progressively by ∼30% over the course of the lesions. These results support the previous conclusion that the oculomotor neural integrator is not a single neural entity and that the mathematical integrative function for different oculomotor subsystems is most likely distributed among a number of nuclei. They also show that the nph apparently is not involved in integrating smooth pursuit signals and that lesions of the nph can fractionate the VOR and nystagmic responses to adequate stimuli.


2011 ◽  
Vol 105 (2) ◽  
pp. 896-909 ◽  
Author(s):  
Owen Debowy ◽  
Robert Baker

Monocular organization of the goldfish horizontal neural integrator was studied during spontaneous scanning saccadic and fixation behaviors. Analysis of neuronal firing rates revealed a population of ipsilateral (37%), conjugate (59%), and contralateral (4%) eye position neurons. When monocular optokinetic stimuli were employed to maximize disjunctive horizontal eye movements, the sampled population changed to 57, 39, and 4%. Monocular eye tracking could be elicited at different gain and phase with the integrator time constant independently modified for each eye by either centripetal (leak) or centrifugal (instability) drifting visual stimuli. Acute midline separation between the hindbrain oculomotor integrators did not affect either monocularity or time constant tuning, corroborating that left and right eye positions are independently encoded within each integrator. Together these findings suggest that the “ipsilateral” and “conjugate/contralateral” integrator neurons primarily target abducens motoneurons and internuclear neurons, respectively. The commissural pathway is proposed to select the conjugate/contralateral eye position neurons and act as a feedfoward inhibition affecting null eye position, oculomotor range, and saccade pattern.


1994 ◽  
Vol 72 (2) ◽  
pp. 909-927 ◽  
Author(s):  
S. G. Lisberger ◽  
T. A. Pavelko ◽  
D. M. Broussard

1. We have identified a group of brain stem cells called “flocculus target neurons” (or FTNs) because they are inhibited at monosynaptic latencies by stimulation of the flocculus and the ventral paraflocculus with single electrical pulses. We report the responses of FTNs, as well as those of other brain stem cells, during horizontal eye movements with the head stationary and during natural vestibular stimulation in monkeys. 2. FTNs discharged primarily in relation to eye movements. The majority (71%) showed increased firing for eye movement away from the side of the recording (“contraversive”), which is consistent with their inhibition by Purkinje cells that show increased firing for eye movement toward the side of recording. However, a significant and surprisingly large percentage (29%) of FTNs showed increased firing for eye movement toward the side of recording (“ipsiversive”). 3. The firing rate of FTNs showed strong modulation during pursuit of sinusoidal target motion with the head stationary and during the compensatory eye movements evoked by fixation of an earth-stationary target with sinusoidal head rotation. In addition, firing rate was related to eye position during steady fixation at different positions. Of the FTNs that showed increased firing for contraversive eye motion during pursuit with the head stationary, most had an infection in the relationship between firing rate and eye position so that the sensitivity to eye position was low for eye positions ipsilateral to straight-ahead gaze and high for eye positions contralateral to straight-ahead gaze. 4. When the monkey canceled the vestibuloocular reflex (VOR) by tracking a target that moved exactly with him during sinusoidal head rotation, the firing rate of FTNs was modulated much less strongly than during pursuit with the head stationary. In the FTNs that showed increased firing for contraversive eye motion during pursuit, firing rate during cancellation of the VOR increased for contraversive head motion during sinusoidal vestibular rotation at 0.4 Hz but was only weakly modulated during rotation at 0.2 Hz. 5. The position-vestibular-pause cells (PVP-cells), previously identified as interneurons in the disynaptic VOR pathways, were not inhibited by stimulation of the flocculus and ventral paraflocculus and had response properties that were different from FTNs. The majority (69%) showed increased firing for contraversive eye motion during pursuit and for ipsiversive head motion during cancellation of the VOR, whereas some (31%) showed the opposite direction preferences under both conditions.(ABSTRACT TRUNCATED AT 250 WORDS)


2003 ◽  
Vol 90 (2) ◽  
pp. 739-754 ◽  
Author(s):  
Pierre A. Sylvestre ◽  
Julia T. L. Choi ◽  
Kathleen E. Cullen

Burst-tonic (BT) neurons in the prepositus hypoglossi and adjacent medial vestibular nuclei are important elements of the neural integrator for horizontal eye movements. While the metrics of their discharges have been studied during conjugate saccades (where the eyes rotate with similar dynamics), their role during disjunctive saccades (where the eyes rotate with markedly different dynamics to account for differences in depths between saccadic targets) remains completely unexplored. In this report, we provide the first detailed quantification of the discharge dynamics of BT neurons during conjugate saccades, disjunctive saccades, and disjunctive fixation. We show that these neurons carry both significant eye position and eye velocity-related signals during conjugate saccades as well as smaller, yet important, “slide” and eye acceleration terms. Further, we demonstrate that a majority of BT neurons, during disjunctive fixation and disjunctive saccades, preferentially encode the position and the velocity of a single eye; only few BT neurons equally encode the movements of both eyes (i.e., have conjugate sensitivities). We argue that BT neurons in the nucleus prepositus hypoglossi/medial vestibular nucleus play an important role in the generation of unequal eye movements during disjunctive saccades, and carry appropriate information to shape the saccadic discharges of the abducens nucleus neurons to which they project.


2014 ◽  
Vol 111 (4) ◽  
pp. 733-745 ◽  
Author(s):  
Mati Joshua ◽  
Stephen G. Lisberger

We have used an analysis of signal and variation in motor behavior to elucidate the organization of the cerebellar and brain stem circuits that control smooth pursuit eye movements. We recorded from the abducens nucleus and identified floccular target neurons (FTNs) and other, non-FTN vestibular neurons. First, we assessed neuron-behavior correlations, defined as the trial-by-trial correlation between the variation in neural firing and eye movement, in brain stem neurons. In agreement with prior data from the cerebellum, neuron-behavior correlations during pursuit initiation were large in all neurons. Second, we asked whether movement variation arises upstream from, in parallel to, or downstream from a given site of recording. We developed a model that highlighted two measures: the ratio of the SDs of neural firing rate and eye movement (“ SDratio”) and the neuron-behavior correlation. The relationship between these measures defines possible sources of variation. During pursuit initiation, SDratio was approximately equal to neuron-behavior correlation, meaning that the source of signal and variation is upstream from the brain stem. During steady-state pursuit, neuron-behavior correlation became somewhat smaller than SDratio for FTNs, meaning that some variation may arise downstream in the brain stem. The data contradicted the model's predictions for sources of variation in pathways that run parallel to the site of recording. Because signal and noise are tightly linked in motor control, we take the source of variation as a proxy for the source of signal, leading us to conclude that the brain controls movement synergies rather than single muscles for eye movements.


2002 ◽  
Vol 88 (2) ◽  
pp. 659-665 ◽  
Author(s):  
Mark S. Goldman ◽  
Chris R. S. Kaneko ◽  
Guy Major ◽  
Emre Aksay ◽  
David W. Tank ◽  
...  

The oculomotor system produces eye-position signals during fixations and head movements by integrating velocity-coded saccadic and vestibular inputs. A previous analysis of nucleus prepositus hypoglossi (nph) lesions in monkeys found that the integration time constant for maintaining fixations decreased, while that for the vestibulo-ocular reflex (VOR) did not. On this basis, it was concluded that saccadic inputs are integrated by the nph, but that the vestibular inputs are integrated elsewhere. We re-analyze the data from which this conclusion was drawn by performing a linear regression of eye velocity on eye position and head velocity to derive the time constant and velocity bias of an imperfect oculomotor neural integrator. The velocity-position regression procedure reveals that the integration time constants for both VOR and saccades decrease in tandem with consecutive nph lesions, consistent with the hypothesis of a single common integrator. The previous evaluation of the integrator time constant relied upon fitting methods that are prone to error in the presence of velocity bias and saccades. The algorithm used to evaluate imperfect fixations in the dark did not account for the nonzero null position of the eyes associated with velocity bias. The phase-shift analysis used in evaluating the response to sinusoidal vestibular input neglects the effect of saccadic resets of eye position on intersaccadic eye velocity, resulting in gross underestimates of the imperfections in integration during VOR. The linear regression method presented here is valid for both fixation and low head velocity VOR data and is easy to implement.


1984 ◽  
Vol 52 (4) ◽  
pp. 724-742 ◽  
Author(s):  
M. C. Chubb ◽  
A. F. Fuchs ◽  
C. A. Scudder

To elucidate how information is processed in the vestibuloocular reflex (VOR) pathways subserving vertical eye movements, extracellular single-unit recordings were obtained from the vestibular nuclei of alert monkeys trained to track a visual target with their eyes while undergoing sinusoidal pitch oscillations (0.2-1.0 Hz). Units with activity related to vertical vestibular stimulation and/or eye movements were classified as either vestibular units (n = 53), vestibular plus eye-position units (n = 30), pursuit units (n = 10), or miscellaneous units (n = 5), which had various combinations of head- and eye-movement sensitivities. Vestibular units discharged in relation to head rotation, but not to smooth eye movements. On average, these units fired approximately in phase with head velocity; however, a broad range of phase shifts was observed. The activities of 8% of the vestibular units were related to saccades. Vestibular plus eye-position units fired in relation to head velocity and eye position and, in addition, usually to eye velocity. Their discharge rates increased for eye and head movements in opposite directions. During combined head and eye movements, the modulation in unit activity was not significantly different from the sum of the modulations during each alone. For saccades, the unit firing rate either decreased to zero or was unaffected. Pursuit units discharged in relation to eye position, eye velocity, or both, but not to head movements alone. For saccades, unit activity usually either paused or was unaffected. The eye-movement-related activities of the vestibular plus eye-position and pursuit units were not significantly different. A quantitative comparison of their firing patterns suggests that vestibular, vestibular plus eye-position, and pursuit neurons in the vestibular nucleus could provide mossy fiber inputs to the flocculus. In addition, the vertical vestibular plus eye-position neurons have discharge patterns similar to those of fibers recorded rostrally in the medial longitudinal fasciculus. Therefore, our data support the view that vertical vestibular plus eye-position neurons are interneurons of the VOR.


2001 ◽  
Vol 86 (6) ◽  
pp. 3056-3060 ◽  
Author(s):  
Yi-Jun Yan ◽  
Dong-Mei Cui ◽  
James C. Lynch

Recent physiological studies have suggested that there are several sites of interaction between the neural pathways that control saccadic eye movements and those that control visual pursuit movements. To address the question of saccade/pursuit interaction from a neuroanatomical point of view, we have studied the connections from the smooth and saccadic eye movement subregions of the frontal eye field (FEFsem and FEFsac, respectively) to the rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF) in four Cebus apella monkeys. The riMLF has traditionally been considered to be a premotor center for vertical saccadic eye movements on the basis of single neuron recording experiments, microstimulation experiments, and surgical or chemical lesion experiments. We localized the functional subregions of the FEF with the use of low-threshold (≤50 μA) intracortical microstimulation. Biotinylated dextran amine or lectin from triticum vulgaris (wheat germ), peroxidase labeled, was placed into these functionally defined subregions to label anterogradely the terminals of axons that originated in the FEF. Our results demonstrate that both the FEFsem and FEFsac send direct projections to the ipsilateral riMLF. The distribution and density of labeling from the FEFsem are comparable to those from the FEFsac. The direct FEFsem-to-riMLF projection suggests a possible role of the riMLF in smooth pursuit eye movements and supports the hypothesis that there is interaction between the saccadic and pursuit subsystems at the brain stem level.


2008 ◽  
Vol 99 (5) ◽  
pp. 2602-2616 ◽  
Author(s):  
Marion R. Van Horn ◽  
Pierre A. Sylvestre ◽  
Kathleen E. Cullen

When we look between objects located at different depths the horizontal movement of each eye is different from that of the other, yet temporally synchronized. Traditionally, a vergence-specific neuronal subsystem, independent from other oculomotor subsystems, has been thought to generate all eye movements in depth. However, recent studies have challenged this view by unmasking interactions between vergence and saccadic eye movements during disconjugate saccades. Here, we combined experimental and modeling approaches to address whether the premotor command to generate disconjugate saccades originates exclusively in “vergence centers.” We found that the brain stem burst generator, which is commonly assumed to drive only the conjugate component of eye movements, carries substantial vergence-related information during disconjugate saccades. Notably, facilitated vergence velocities during disconjugate saccades were synchronized with the burst onset of excitatory and inhibitory brain stem saccadic burst neurons (SBNs). Furthermore, the time-varying discharge properties of the majority of SBNs (>70%) preferentially encoded the dynamics of an individual eye during disconjugate saccades. When these experimental results were implemented into a computer-based simulation, to further evaluate the contribution of the saccadic burst generator in generating disconjugate saccades, we found that it carries all the vergence drive that is necessary to shape the activity of the abducens motoneurons to which it projects. Taken together, our results provide evidence that the premotor commands from the brain stem saccadic circuitry, to the target motoneurons, are sufficient to ensure the accurate control shifts of gaze in three dimensions.


Sign in / Sign up

Export Citation Format

Share Document