Oscillatory synaptic interactions between ventroposterior and reticular neurons in mouse thalamus in vitro

1994 ◽  
Vol 72 (4) ◽  
pp. 1993-2003 ◽  
Author(s):  
R. A. Warren ◽  
A. Agmon ◽  
E. G. Jones

1. The thalamic reticular nucleus (RTN) has reciprocal connections with relay neurons in the dorsal thalamus. We used whole cell recording in a mouse in vitro slice preparation maintained at room temperature to study the synaptic interactions between the RTN and the ventroposterior thalamic nucleus (VP) during evoked low-frequency oscillations. 2. After a single electrical stimulus of the internal capsule, postsynaptic potentials (PSPs) were recorded in all VP and RTN neurons. In 76% of slices, there was an initial response followed by recurrent PSPs lasting for up to 8 s and with a frequency of approximately 2 Hz in both the VP and RTN. 3. In RTN neurons the initial response consisted of a fast excitatory postsynaptic potential (EPSP) that generated a burst of action potentials. Recurrent PSPs consisted of barrages of EPSPs that often reached burst threshold. The structure of subthreshold EPSP barrages in RTN neurons suggested that they were generated by bursting VP neurons. 4. In VP neurons the stimulus usually evoked a small EPSP followed by a large inhibitory postsynaptic potential (IPSP) that was often followed by a rebound burst. This initial response was often followed by a series of recurrent IPSPs presumably generated by RTN bursts, because intrinsic inhibitory neurons are absent in rodent VP. 5. IPSPs in VP neurons and recurrent EPSPs in RTN neurons were completely abolished by application of a gamma-aminobutyric acid-A (GABAA) receptor antagonist. A GABAB receptor antagonist produced no or little change in either the initial or recurrent response. 6. Recurrent IPSPs in VP neurons were abolished by glutamate receptor antagonists before the initial IPSP, which always remained stimulus dependent. 7. The dependency of recurring IPSPs in VP and recurring EPSPs in RTN upon GABA-mediated inhibition and excitatory amino acid-mediated excitation, plus the character of recurring EPSPs in the RTN strongly suggest that the recurring events were generated through reverse-reciprocal synaptic interactions between VP and RTN neurons. These synaptic interactions most likely play an important role in thalamic oscillations in behavior.

2010 ◽  
pp. 273-280
Author(s):  
X Wang ◽  
G Yu ◽  
X Hou ◽  
J Zhou ◽  
B Yang ◽  
...  

Whole cell patch-clamp recordings from GABAergic cells of thalamic reticular nucleus (RTN) in thalamocortical slices made from postnatal day 6 (P6) to 10 (P10) were used to investigate the pattern of rebound bursts (RBs) triggered by an injection of hyperpolarizing current into RTN cells. The number of RBs in the RTN and the overlying Na+/K+ spikes changed in an agedependent manner. The generation of RBs depended largely on the amplitude of the after-hyperpolarizations (AHPs). RB patterns in response to hyperpolarizing current injection into relay cells were markedly different from RB patterns in RTN cells with an after-depolarization. GABAA receptor antagonist bicuculline methiodide (BMI) changed burst firing patterns, increasing the duration of RB and decreasing the amplitude of AHP in RTN cells. Furthermore, local puffs of NMDA in the presence of BMI induced RBs. K+ channel blocker 4-aminopyridine partially mimicked the effect of BMI on AHPs. The shapes of RBs were altered by a selective CaMKII inhibitor KN-62, but not by an inactive analog KN-04.


1997 ◽  
Vol 78 (1) ◽  
pp. 550-553 ◽  
Author(s):  
Richard A. Warren ◽  
Peyman Golshani ◽  
Edward G. Jones

Warren, Richard A., Peyman Golshani, and Edward G. Jones. GABAB-receptor-mediated inhibition in developing mouse ventral posterior thalamic nucleus. J. Neurophysiol. 78: 549–553, 1997. Inhibitory postsynaptic potentials (IPSPs) generated by activation of the thalamic reticular nucleus (RTN) were recorded in neurons of the ventral posterior nucleus (VP) in vitro in slices from mice aged postnatal day (P)1–P17. An early IPSP peaking 41 ± 2.5 (SE) ms after electrical stimulation of the internal capsule or RTN was found in 96% of VP neurons. This early IPSP was blocked by bicuculline, showing its dependence on γ-aminobutyric acid-A (GABAA) receptors. A late IPSP peaking 357 ± 27 ms after the stimulus was observed in 22% of VP neurons in control medium but was uncovered in 38% of neurons when bicuculline was added. The late IPSP was blocked by addition of a GABAB antagonist, 2-hydroxysaclofen, to the medium ( n = 7); it had a reversal potential of −98 ± 1.3 mV, 14 mV negative to the early component. In contrast to the early IPSP, whose reversal potential became more negative during postnatal development, the reversal potential of the late IPSP remained constant throughout the postnatal period studied. The most significant change in the late IPSP was shortening in duration, with reduction in latency-to-peak by >400 ms, between P1 and P10. No changes of comparable magnitude were observed in the duration of the earlier GABAA response. These results show that both GABAA and GABAB IPSPs are present very early in the postnatal thalamus and that their characteristics evolve along independent paths during postnatal development.


1996 ◽  
Vol 76 (5) ◽  
pp. 3126-3135 ◽  
Author(s):  
N. A. Breakwell ◽  
M. J. Rowan ◽  
R. Anwyl

1. We reexamined the important areas of conflict in (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD]-induced potentiation of the field excitatory postsynaptic potential (EPSP) and, for the first time, investigated the role of mGluRs in EPSP-spike (E-S) coupling. 2. (1S,3R)-ACPD (10 microM) bath applied for 20 min consistently induced a long-lasting potentiation of the dendritic EPSP in area CA1 of submerged rat hippocampal slices, which was considerably faster in onset than described previously. 3. This effect was not associated with any change in presynaptic fiber volley but was dependent on both an intact CA3 connection, because removal of area CA3 blocked (1S,3R)-ACPD-induced potentiation, and also on functional N-methyl-D-aspartate (NMDA) receptors, because (1S,3R)-ACPD-induced potentiation was blocked by inclusion of the NMDA receptor antagonist D(-)-2-amino-5-phosphonopentanoic acid (AP5; 50 microM). 4. (1S,3R)-ACPD induced a long-lasting potentiation of the population spike (PS) amplitude that was consistently larger than that of the EPSP measured in the cell body area. This EPSP-PS (E-S) potentiation was blocked by inclusion of the gamma-aminobuturic acid-A (GABAA) receptor antagonist, picrotoxin (50 microM). 5. E-S potentiation induced by high-frequency stimulation (HFS), which was of the same magnitude as that induced by (1S,3R)-ACPD, was blocked by the mGluR-selective antagonist (+)-alpha-methyl-4-carboxyphenylglycine (+MCPG; 250 microM). +MCPG also blocked HFS-induced long-term potentiation (LTP) of the EPSP measured in the cell body. 6. These results suggest that (1S,3R)-ACPD-induced potentiation is NMDA receptor dependent, contrary to some previous findings, and provide further evidence that both synaptic and E-S potentiation induced by (1S,3R)-ACPD share common mechanisms of expression with HFS-induced LTP. The data emphasize the important role of mGluRs in induction of EPSP LTP and E-S potentiation.


1990 ◽  
Vol 64 (3) ◽  
pp. 991-999 ◽  
Author(s):  
E. Shen ◽  
N. Mo ◽  
N. J. Dun

1. Intracellular recordings were made from antidromically identified sympathetic preganglionic neurons (SPNs) in transverse thoracolumbar spinal cord slices from neonate (12- to 22-day-old) rats. 2. Electrical stimulation of dorsal roots or dorsal root entry zone elicited in SPNs an excitatory postsynaptic potential (EPSP) or multiple EPSPs of varying latencies. The EPSP could be graded by varying the stimulus intensity and, on reaching the threshold, discharged an action potential. 3. The dorsal root-evoked EPSPs had a mean synaptic latency of 2.6 ms (range: 1.2-11 ms), suggesting a polysynaptic pathway. The EPSPs were characteristically slow in onset with a mean rise time and half-decay time of 8.3 and 23 ms, respectively. 4. At the resting membrane potential of -50 to -60 mV, the amplitude of EPSPs recorded in normal (1.3 mM Mg2+) Krebs solution was reduced by membrane hyperpolarization or depolarization. In Mg2(+)-free solution, EPSPs were potentiated and reached threshold for spike discharge. 5. The EPSPs were suppressed by the nonselective glutamate receptor antagonist kynurenic acid (0.1-0.5 mM) and by the N-methyl-D-aspartate (NMDA) receptor antagonists D-2-amino-5-phosphonovaleric acid (APV; 1-10 microM) and ketamine (5-10 microM), but not by the quisqualate (QA)/kainate (KA) receptor antagonist 6,7-dinitroquinoxaline-2,3-dione (DNQX, 1-10 microM). The latter depressed the EPSPs elicited by stimulation of lateral funiculus in the same SPNs. 6. NMDA applied by pressure elicited a depolarization in the SPNs. In normal Krebs solution the response was voltage dependent with the peak amplitude occurring around -60 mV; conditioning depolarization or hyperpolarization diminished the response.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 265 (2) ◽  
pp. R348-R355 ◽  
Author(s):  
V. L. Trudeau ◽  
B. D. Sloley ◽  
R. E. Peter

The involvement of gamma-aminobutyric acid (GABA) in regulation of pituitary gonadotropin-II (GTH-II) release was studied in the goldfish. Intraperitoneal injection of GABA (300 micrograms/g) stimulated an increase in serum GTH-II levels at 30 min postinjection. The GABAA receptor agonist muscimol (0.1-10 micrograms/g) stimulated GTH-II in a dose-dependent manner. Baclofen, a GABAB receptor agonist, had a small but significant stimulatory effect at 1 and 10 micrograms/g; the amount of GTH-II released in response to baclofen was significantly less (P < 0.05) than that released by muscimol. Pretreatment of goldfish with bicuculline, a GABAA receptor antagonist, but not saclofen, a GABAB receptor antagonist, blocked the stimulatory effect of GABA on serum GTH-II. Elevation of brain and pituitary GABA levels with the GABA transaminase inhibitor, gamma-vinyl-GABA (GVG), decreased hypothalamic and pituitary dopamine (DA) turnover rates, indicating that GABA may stimulate GTH-II release in the goldfish by decreasing dopaminergic inhibition of GTH-II release. The release of GTH-II stimulated by muscimol and GVG was potentiated by pharmacological agents that decrease inhibitory dopaminergic tone, indicating that DA may also inhibit GABA-stimulated GTH-II release. Based on the linear 24-h accumulation of GABA in brain and pituitary after GVG injection, implantation of testosterone, estradiol, or progesterone, previously shown to regulate the serum GTH-II release response to gonadotropin-releasing hormone and GABA, was also found to modulate GABA synthesis in the brain and pituitary.(ABSTRACT TRUNCATED AT 250 WORDS)


2004 ◽  
Vol 91 (2) ◽  
pp. 759-766 ◽  
Author(s):  
Liming Zhang ◽  
Edward G. Jones

Mutual inhibition between the GABAergic cells of the thalamic reticular nucleus (RTN) is important in regulating oscillations in the thalamocortical network, promoting those in the spindle range of frequencies over those at lower frequencies. Excitatory inputs to the RTN from the cerebral cortex are numerically large and particularly powerful in inducing spindles. However, the extent to which corticothalamic influences can engage the inhibitory network of the RTN has not been fully explored. Focal electrical stimulation of layer VI in the barrel cortex of the mouse thalamocortical slice in vitro resulted in prominent di- or polysynaptic inhibitory postsynaptic currents (IPSCs) in RTN cells under the experimental conditions used. The majority of cortically induced responses consisted of mixed PSCs in which the inhibitory component predominated or of large IPSCs alone, implying inhibition of neighboring cells by other, cortically excited RTN cells. Within the mixed PSCs, fixed and variable latency components could commonly be identified. IPSCs could be blocked by application of ionotropic glutamate receptor antagonists or of GABAA receptor antagonists, also indicating their dependence on corticothalamic excitation triggering disynaptic or polysynaptic inhibition. Spontaneous GABAA receptor-dependent IPSCs were routinely observed in the RTN and, taken together with the results of cortical stimulation, indicate the existence of a substantial network of intrareticular inhibitory connections that can be effectively recruited by the corticothalamic system. These results suggest activation of cortical excitatory inputs triggers the propagation of inhibitory currents within the RTN and support the view that activation of the RTN from the somatosensory cortex, although focused by the topography of the corticothalamic projection, is capable of disynaptically engaging the whole inhibitory network of the RTN, by local and probably by reentrant GABAA receptor–based synapses, thus spreading the corticothalamic influence throughout the RTN.


2002 ◽  
Vol 96 (3) ◽  
pp. 681-687 ◽  
Author(s):  
Rika Sasaki ◽  
Koki Hirota ◽  
Sheldon H. Roth ◽  
Mitsuaki Yamazaki

Background Magnesium ion (Mg2+) is involved in important processes as modulation of ion channels, receptors, neurotransmitter release, and cell excitability in the central nervous system. Although extracellular Mg2+ concentration ([Mg2+]o) can be altered during general anesthesia, there has been no evidence for [Mg2+]o-dependent modification of anesthetic actions on neural excitability in central nervous system preparations. The purpose of current study was to determine whether the effects of volatile anesthetics are [Mg2+]o-dependent in mammalian central nervous system. Methods Extracellular electrophysiologic recordings from CA1 neurons in rat hippocampal slices were used to investigate the effects of [Mg2+]o and anesthetics on population spike amplitude and excitatory postsynaptic potential slope. Results The depression of population spike amplitudes and excitatory postsynaptic potential slopes by volatile anesthetics were significantly dependent on [Mg2+]o. The effects were attenuated in the presence of a constant [Mg2+]o/extracellular Ca2+ concentration ratio. However, neither N-methyl-d-aspartate receptor antagonists nor a non-N-methyl-d-aspartate receptor antagonist altered the [Mg2+]o-dependent anesthetic-induced depression of population spikes. Volatile anesthetics produced minimal effects on input-output (excitatory postsynaptic potential-population spike) relations or the threshold for population spike generation. The effects were not modified by changes in [Mg2+]o. In addition, the population spike amplitudes, elicited via antidromic (nonsynaptic) stimulation, were not influenced by [Mg2+]o in the presence of volatile anesthetics. Conclusions These results provide support that alteration of [Mg2+]o modifies the actions of volatile anesthetics on synaptic transmission and that the effects could be, at least in part, a result of presynaptic Ca2+ channel-related mechanisms.


2019 ◽  
Author(s):  
Gil Vantomme ◽  
Zita Rovó ◽  
Romain Cardis ◽  
Elidie Béard ◽  
Georgia Katsioudi ◽  
...  

SummaryTo navigate in space, an animal must refer to sensory cues to orient and move. Circuit and synaptic mechanisms that integrate cues with internal head-direction (HD) signals remain, however, unclear. We identify an excitatory synaptic projection from the presubiculum (PreS) and the multisensory-associative retrosplenial cortex (RSC) to the anterodorsal thalamic reticular nucleus (TRN), so far classically implied in gating sensory information flow. In vitro, projections to TRN involved AMPA/NMDA-type glutamate receptors that initiated TRN cell burst discharge and feedforward inhibition of anterior thalamic nuclei. In vivo, chemogenetic anterodorsal TRN inhibition modulated PreS/RSC-induced anterior thalamic firing dynamics, broadened the tuning of thalamic HD cells, and led to preferential use of allo-over egocentric search strategies in the Morris water maze. TRN-dependent thalamic inhibition is thus an integral part of limbic navigational circuits wherein it coordinates external sensory and internal HD signals to regulate the choice of search strategies during spatial navigation.


Sign in / Sign up

Export Citation Format

Share Document