Cerebellar nitric oxide is necessary for vestibulo-ocular reflex adaptation, a sensorimotor model of learning

1995 ◽  
Vol 74 (1) ◽  
pp. 489-494 ◽  
Author(s):  
J. Li ◽  
S. S. Smith ◽  
J. G. McElligott

1. Nitric oxide (NO) production in the nervous system has been implicated in cellular mechanisms of learning and memory. Our study investigates an in vivo sensorimotor model of learning. It demonstrates that a localized vestibulocerebellar injection of the NO synthase inhibitor, L-NG-monomethyl-arginine (L-NMMA), which specifically blocks NO production, inhibited the acquisition of adaptive vestibulo-ocular reflex (VOR) gain increases but not gain decreases in the goldfish. 2. Restoration of NO production by concomitant administration of L-arginine (the substrate for NO synthase) and L-NMMA suppressed the inhibitory effect of L-NMMA on adaptive gain increases. 3. This effect of L-NMMA was stereospecific because injection of D-NMMA did not suppress adaptive VOR gain increases. 4. Injection of L-NMMA after VOR adaptation had no effect on retention, failing to alter the postadaptive recovery after a VOR gain increase. 5. In conclusion, acquisition of adaptive VOR gain increases are affected by cerebellar NO inhibition. However, because gain decreases are not, they may involve either non-NO cerebellar or extracerebellar mechanisms. In addition, different processes for acquisition and retention of gain increases may be operating, because inhibition of cerebellar NO affects the acquisition but not the retention phase.

2016 ◽  
Vol 310 (8) ◽  
pp. F755-F762 ◽  
Author(s):  
Peng Wu ◽  
Zhongxiuzi Gao ◽  
Shiwei Ye ◽  
Zhi Qi

We used patch-clamp techniques to examine whether nitric oxide (NO) decreases NaCl reabsorption by suppressing basolateral 10-pS Cl− channels in the thick ascending limb (TAL). Both the NO synthase substrate l-arginine (l-Arg) and the NO donor S-nitroso- N-acetylpenicillamine significantly inhibited 10-pS Cl− channel activity in the TAL. The inhibitory effect of l-Arg on Cl− channels was completely abolished in the presence of the NO synthase inhibitor or NO scavenger. Moreover, inhibition of soluble guanylyl cyclase abrogated the effect of l-Arg on Cl− channels, whereas the cGMP analog 8-bromo-cGMP (8-BrcGMP) mimicked the effect of l-Arg and significantly decreased 10-pS Cl− channel activity, indicating that NO inhibits basolateral Cl− channels by increasing cGMP production. Furthermore, treatment of the TAL with a PKG inhibitor blocked the effect of l-Arg and 8-BrcGMP on Cl− channels, respectively. In contrast, a phosphodiesterase 2 inhibitor had no significant effect on l-Arg or 8-BrcGMP-induced inhibition of Cl− channels. Therefore, we conclude that NO decreases basolateral 10-pS Cl− channel activity through a cGMP-dependent PKG pathway, which may contribute to the natriuretic and diuretic effects of NO in vivo.


2003 ◽  
Vol 198 (5) ◽  
pp. 705-713 ◽  
Author(s):  
Martin I. Voskuil ◽  
Dirk Schnappinger ◽  
Kevin C. Visconti ◽  
Maria I. Harrell ◽  
Gregory M. Dolganov ◽  
...  

An estimated two billion persons are latently infected with Mycobacterium tuberculosis. The host factors that initiate and maintain this latent state and the mechanisms by which M. tuberculosis survives within latent lesions are compelling but unanswered questions. One such host factor may be nitric oxide (NO), a product of activated macrophages that exhibits antimycobacterial properties. Evidence for the possible significance of NO comes from murine models of tuberculosis showing progressive infection in animals unable to produce the inducible isoform of NO synthase and in animals treated with a NO synthase inhibitor. Here, we show that O2 and low, nontoxic concentrations of NO competitively modulate the expression of a 48-gene regulon, which is expressed in vivo and prepares bacilli for survival during long periods of in vitro dormancy. NO was found to reversibly inhibit aerobic respiration and growth. A heme-containing enzyme, possibly the terminal oxidase in the respiratory pathway, likely senses and integrates NO and O2 levels and signals the regulon. These data lead to a model postulating that, within granulomas, inhibition of respiration by NO production and O2 limitation constrains M. tuberculosis replication rates in persons with latent tuberculosis.


1993 ◽  
Vol 264 (4) ◽  
pp. G678-G685
Author(s):  
J. G. Jin ◽  
S. Misra ◽  
J. R. Grider ◽  
G. M. Makhlouf

The mechanism of action of endogenous tachykinins [substance P (SP) and neurokinin A and B (NKA and NKB)] and of receptor-specific tachykinin analogues (SP methyl ester (SPME), [beta-Ala8]NKA-(4-10), and senktide) was examined in circular muscle of guinea pig stomach. Cross-desensitization studies confirmed that SPME and SP interacted with NK-1 receptors, [beta-Ala8]NKA-(4-10) and NKA with NK-2 receptors, and senktide and NKB with NK-3 receptors. NK-1 and NK-3-receptor agonists induced relaxation and stimulated vasoactive intestinal peptide (VIP) release and nitric oxide (NO) production: tetrodotoxin abolished VIP release, NO production, and relaxation, converting the response to NK-1-receptor agonists to contraction; the NO synthase inhibitor NG-nitro-L-arginine (L-NNA) abolished NO production, partly inhibited VIP release (56-64%, P < 0.01), and abolished relaxation; the VIP antagonist VIP-(10-28) partly inhibited NO production (73-74%, P < 0.001) and relaxation (56-58%, P < 0.01); and atropine augmented relaxation by 28-35% (P < 0.01). The pattern of inhibition implied that: 1) relaxation was mediated by VIP and NO; 2) VIP release was partly dependent on NO production, since it was strongly inhibited by L-NNA; and 3) NO was largely produced by the action of VIP on muscle cells, since it was strongly inhibited by VIP-(10-28). NK-2-receptor agonists elicited only contraction that was not affected by tetrodotoxin; these agonists also inhibited VIP release, NO production, and relaxation induced by NK-1- and NK-3-receptor agonists.(ABSTRACT TRUNCATED AT 250 WORDS)


2001 ◽  
Vol 280 (3) ◽  
pp. H1222-H1231 ◽  
Author(s):  
X. F. Figueroa ◽  
A. D. Martínez ◽  
D. R. González ◽  
P. I. Jara ◽  
S. Ayala ◽  
...  

To assess the hypothesis that microvascular nitric oxide (NO) is critical to maintain blood flow and solute exchange, we quantified NO production in the hamster cheek pouch in vivo, correlating it with vascular dynamics. Hamsters (100–120 g) were anesthetized and prepared for measurement of microvessel diameters by intravital microscopy, of plasma flow by isotopic sodium clearance, and of NO production by chemiluminescence. Analysis of endothelial NO synthase (eNOS) location by immunocytochemistry and subcellular fractionation revealed that eNOS was present in arterioles and venules and was 67 ± 7% membrane bound. Basal NO release was 60.1 ± 5.1 pM/min ( n = 35), and plasma flow was 2.95 ± 0.27 μl/min ( n = 29). Local NO synthase inhibition with 30 μM N ω-nitro-l-arginine reduced NO production to 8.6 ± 2.6 pmol/min (−83 ± 5%, n = 9) and plasma flow to 1.95 ± 0.15 μl/min (−28 ± 12%, n = 17) within 30–45 min, in parallel with constriction of arterioles (9–14%) and venules (19–25%). The effects of N ω-nitro-l-arginine (10–30 μM) were proportional to basal microvascular conductance ( r = 0.7, P < 0.05) and fully prevented by 1 mM l-arginine. We conclude that in this tissue, NO production contributes to 35–50% of resting microvascular conductance and plasma-tissue exchange.


2003 ◽  
Vol 285 (4) ◽  
pp. G747-G753 ◽  
Author(s):  
Catalina Caballero-Alomar ◽  
Carmen Santos ◽  
Diego Lopez ◽  
M. Teresa Mitjavila ◽  
Pere Puig-Parellada

We examined in vitro the source and role of basal nitric oxide (NO) in proximal segments of guinea pig taenia caeci in nonadrenergic, noncholinergic (NANC) conditions. Using electron paramagnetic resonance (EPR), we measured the effect of the NO synthase inhibitor NG-nitro-l-arginine methyl ester (l-NAME, 10–4 M), the neuronal blocker tetrodotoxin (TTX, 10–6 M), or both on spontaneous contractions and on the production of basal NO. Both l-NAME and TTX, when tested alone, increased the amplitude and frequency of contractions. NO production was abolished by l-NAME and was inhibited by 38% by TTX. When tested together, l-NAME in the presence of TTX or TTX in the presence of l-NAME had no further effect on the amplitude or frequency of spontaneous contractions, and the NO production was inhibited. These findings suggest that basal NO consists of TTX-sensitive and TTX-resistant components. The TTX-sensitive NO has an inhibitory effect on spontaneous contractions; the role of TTX-resistant NO is unknown.


1995 ◽  
Vol 269 (3) ◽  
pp. C757-C765 ◽  
Author(s):  
B. J. Buckley ◽  
Z. Mirza ◽  
A. R. Whorton

Vascular endothelium responds to Ca(2+)-mobilizing agonists by producing nitric oxide (NO), a potent vasodilator and inhibitor of platelet aggregation. Regulation of constitutively expressed endothelial NO synthase (eNOS) in intact cells is not well understood. We investigated the kinetics of NO formation in response to Ca(2+)-mobilizing agonists, the requirement for extracellular L-arginine, and the role of NO in regulating eNOS activity. When endothelial cells were stimulated with bradykinin and ATP in the presence of 100 microM L-arginine, we observed a rapid and transient rise in intracellular Ca2+ concentration ([Ca2+]i) from 50 +/- 8 nM to 698 +/- 74 and 637 +/- 53 nM, respectively, and a rapid and transient rise in NO production from a basal level of 37 pmol.min-1.mg protein-1 to 256 and 275 pmol.min-1.mg protein-1, respectively. When cells were stimulated with A-23187 or thapsigargin in the presence of 100 microM L-arginine, we observed a sustained increase in [Ca2+]i and a sustained increase in NO production. The rate of NO synthesis was linear over 30 min, rising above control levels of 7 pmol/min to 53 pmol/min for A-23187 and 62 pmol/min for thapsigargin. Thapsigargin stimulated NO production and [Ca2+]i with 50% effective concentration values of 0.01 and 0.05 microM, respectively. Ca(2+)-stimulated NO production was attenuated by the NO synthase inhibitor NG-monomethyl-L-arginine, the removal of extracellular L-arginine, and the Ca(2+)-chelator ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid. When we exposed cells to NO gas (3.1 mM for 15 min) and S-nitrosoglutathione (10 mM for 1 h) thapsigargin-stimulated NO production was decreased by 50%.(ABSTRACT TRUNCATED AT 250 WORDS)


1997 ◽  
Vol 272 (3) ◽  
pp. R995-R1001 ◽  
Author(s):  
D. Abran ◽  
D. R. Varma ◽  
S. Chemtob

This study was conducted to determine if high perinatal prostaglandin (PG) and thromboxane (TxA2) levels modified their choroidal vasomotor effects and receptor levels. Both nonperfused (eyecup preparations) and perfused choroidal vessels from saline- or ibuprofen-treated 1-day-old pigs and tissues from adult pigs were used; all prostanoids produced similar vasomotor effects on both preparations. Choroidal PGF2alpha, TxA2, PGI2, and PGD2 levels were higher in the newborn than in adult pigs; injections of ibuprofen (40 mg/kg every 4 h for 48 h) into newborn pigs significantly decreased choroidal levels of all these prostanoids. PGF2alpha and the TxA2 mimetic U-46619 caused less choroidal vasoconstriction and production of inositol 1,4,5-trisphosphate (IP3) in the newborn than in adult pigs. Ibuprofen treatment increased choroidal PGF2alpha vasoconstrictor effects, IP3 production, and receptors, but did not modify response to U-46619. Carbaprostacyclin (PGI2 analog) caused a greater choroidal vasodilatation and adenosine adenosine 3',5'-cyclic monophosphate (cAMP) production in the newborn than in adult pigs; these effects were not modified by ibuprofen. PGD2 did not increase cAMP but caused greater dilatation and nitrite [oxidation product of nitric oxide (NO)] production in the choroid of newborn than of adult pigs, which were decreased to adult levels by ibuprofen and the NO synthase inhibitor N(omega)-nitro-L-arginine. These data suggest that high perinatal PG levels downregulate PGF2alpha receptors and vascular effects but do not modify choroidal responses to TxA2 and PGI2; NO seems to contribute to the vasodilator effects of PGD2.


2007 ◽  
Vol 293 (3) ◽  
pp. H1457-H1465 ◽  
Author(s):  
Dang Van Cuong ◽  
Mohamad Warda ◽  
Nari Kim ◽  
Won Sun Park ◽  
Jae Hong Ko ◽  
...  

In this study, dynamic changes in nitric oxide (NO) and mitochondrial superoxide (O2•−) were examined during anoxic preconditioning (AP) in rat heart model. AP and anoxia-reoxygenation (A/R) were performed on isolated hearts and single cardiomyocytes. The cellular insult in the form of infarct size and DNA damage were localized and correlated with NO synthases (endothelial and inducible) expression levels. The results showed that endocardium was the most affected region in AP groups, whereas the larger area of infarct was confined to mid- and epicardium in the A/R group. Interestingly, a high-level expression of immunofluorescent NO synthases was restricted to viable areas in the AP. In contrast to the gradual increase in O2•− level that occurred in the AP group, a sudden massive increase in its level was demonstrated at the onset of reoxygenation in the A/R group. The observed increase in NO production during reoxygenation in the AP group was attenuated by inducible NO synthase inhibitor. The study revealed, on a real-time basis, the role played by preconditioning for modulating NO and O2•− levels on behalf of cell survival. The results afford a better understanding of cardiac-adapting mechanism during AP and the role of inducible NO synthase in this important phenomenon.


2001 ◽  
Vol 280 (3) ◽  
pp. L400-L408 ◽  
Author(s):  
Casey M. Calkins ◽  
Denis D. Bensard ◽  
Julie K. Heimbach ◽  
Xianzhong Meng ◽  
Brian D. Shames ◽  
...  

Chemokines stimulate the influx of leukocytes into tissues. Their production is regulated by nuclear factor-κB (NF-κB), an inducible transcription factor under the control of inhibitory factor κB-α (IκB-α). We have previously demonstrated that l-arginine (l-Arg) attenuates neutrophil accumulation and pulmonary vascular injury after administration of lipopolysaccharide (LPS). We hypothesized thatl-Arg would attenuate the production of lung chemokines by stabilizing IκB-α and preventing NF-κB DNA binding. We examined the effect of l-Arg on chemokine production, IκB-α degradation, and NF-κB DNA binding in the lung after systemic LPS. To block nitric oxide (NO) production, a NO synthase inhibitor was given before l-Arg. LPS induced the production of chemokine protein and mRNA. l-Arg attenuated the production of chemokine protein and mRNA, prevented the decrease in IκB-α levels, and inhibited NF-κB DNA binding. NO synthase inhibition abolished the effects of l-Arg on all measured parameters. Our results suggest that l-Arg abrogates chemokine protein and mRNA production in rat lung after LPS. This effect is dependent on NO and is mediated by stabilization of IκB-α levels and inhibition of NF-κB DNA binding.


Hypertension ◽  
2000 ◽  
Vol 36 (suppl_1) ◽  
pp. 681-681
Author(s):  
Patricia L Turner ◽  
Shyama M E Masilamani ◽  
Ivan Reyes ◽  
Mark A Knepper

21 Short term effects of nitric oxide (NO) on renal Na transport are well described, but long-term effects have not been investigated. To assess the role of NO on long-term regulation of Na transporter abundance along the renal tubule, we have applied a “targeted proteomics” approach. This approach uses an array of peptide-directed polyclonal antibodies to each of the major apical Na transporters and aquaporins to assess renal abundance changes in response to a given in vivo stimulus. Rats (n=6) were treated for 3 days with 30mg/kg N G -nitro-L-arginine (L-NAME), a non-selective NO synthase inhibitor, via osmotic mini-pump, while controls (n=6) received vehicle infusion. Readout was via semiquantitative immunoblotting. The table indicates the percent changes in band density in whole kidney samples for each protein target. Similar results were seen in cortical samples from the same rats, and in additional rats with identical treatment. We conclude that long-term inhibition of NO synthase with L-NAME results in a selective increase in the abundance of NCC, the thiazide-sensitive Na-Cl transporter of the distal convoluted tubule.


Sign in / Sign up

Export Citation Format

Share Document