Effects of the Gliotoxin Fluorocitrate on Spreading Depression and Glial Membrane Potential in Rat Brain In Situ

1997 ◽  
Vol 78 (1) ◽  
pp. 295-307 ◽  
Author(s):  
Carlota Largo ◽  
José M. Ibarz ◽  
Oscar Herreras

Largo, Carlota, José M. Ibarz, and Oscar Herreras. Effects of the gliotoxin fluorocitrate on spreading depression and glial membrane potential in rat brain in situ. J. Neurophysiol. 78: 295–307, 1997. DC extracellular potential shifts (Δ V o) associated with spreading depression (SD) reflect massive cell depolarization, but their cellular generators remain obscure. We have recently reported that the glial specific metabolic poison fluorocitrate (FC) delivered by microdialysis in situ caused a rapid impairment of glial function followed some hours later by loss of neuronal electrogenic activity and neuron death. We have used the time windows for selective decay of cell types so created to study the relative participation of glia and neurons in SD, and we report a detailed analysis of the effects of FC on evoked SD waves and glial membrane potential ( V m). Extracellular potential ( V o), interstitial potassium concentration ([K+]o), evoked potentials, and transmembrane glial potentials were monitored in the CA1 area before, during, and after administration of FC with or without elevated K+ concentration in the dialysate. SD waves propagated faster and lasted longer during FC treatment. Δ V o in stratum pyramidale, which normally are much shorter and of smaller amplitude than those in stratum radiatum, expanded during FC treatment to match those in stratum radiatum. The coalescing SD waves that develop late during prolonged high-K+ dialysis and are typically limited to stratum radiatum, also expanded into stratum pyramidale under the influence of FC. SD provoked in neocortex normally does not spread to the CA1, but during FC treatment it readily reached CA1 via entorhinal cortex. Once neuronal function began to deteriorate, SD waves became smaller and slower, and eventually failed to enter the region around the FC source. Slow, moderately negative Δ V o that mirrored [K+]o increments could still be recorded well after neuronal function and SD-associated V o had disappeared. Glial cell V m gradually depolarized during FC administration, beginning much before depression of neuronal antidromic action potentials. Calculations based on the results predict a large decrease in glial potassium content during FC treatment. The results are compatible with neurons being the major generator of the Δ V o associated with SD. We conclude that energy shortage in glial cells makes brain tissue more susceptible to SD and therefore it may increase the risk of neuron damage.

2000 ◽  
Vol 83 (1) ◽  
pp. 90-98 ◽  
Author(s):  
John A. Connor ◽  
Robert J. Cormier

Glutamate stimulation of hippocampal CA1 neurons in slice was delivered via iontophoresis from a microelectrode. Five pulses (∼5 μA, 10 s duration, repeated at 1 min intervals) were applied with the electrode tip positioned in the stratum radiatum near the dendrites of a neuron filled with the Ca2+ indicator fura-2. A single stimulus set produced Ca2+ elevations that ranged from several hundred nM to several μM and that, in all but a few neurons, recovered within 1 min of stimulus termination. Subsequent identical stimulation produced Ca2+ elevations that outlasted the local glutamate elevations by several minutes as judged by response recoveries in neighboring cells or in other parts of the same neuron. These long responses ultimately recovered but persisted for up to 10 min and were most prominent in the mid and distal dendrites. Recovery was not observed for responses that spread to the soma. The elevated Ca2+ levels were accompanied by membrane depolarization but did not appear to depend on the depolarization. High-resolution images demonstrated responsive areas that involved only a few μm of dendrite. Our results confirm the previous general findings from isolated and cell culture neurons that glutamate stimulation, if carried beyond a certain range, results in long-lasting Ca2+ elevation. The response characterized here in mature in situ neurons was significantly different in terms of time course and reversibility. We suggest that the extended Ca2+ elevations might serve not only as a trigger for delayed neuron death but, where more spatially restricted, as a signal for local remodeling in dendrites.


RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 108635-108644 ◽  
Author(s):  
Xian-En Zhao ◽  
Yongrui He ◽  
Ping Yan ◽  
Na Wei ◽  
Renjun Wang ◽  
...  

In situ UA-DDLLME coupled with UHPLC-MS/MS has been developed for simultaneous determination of neurotransmitters and baicalein from Parkinson's disease rats.


1991 ◽  
Vol 69 (11) ◽  
pp. 1705-1712 ◽  
Author(s):  
Noburu Konno ◽  
K. J. Kako

Hydrogen peroxide (H2O2) and hypochlorite (HOCl) cause a variety of cellular dysfunctions. In this study we examined the effects of these agents on the electrical potential gradient across the inner membrane of mitochondria in situ in isolated rat heart myocytes. Myocytes were prepared by collagenase digestion and incubated in the presence of H2O2 or HOCl. Transmembrane electrical gradients were measured by distribution of [3H]triphenylmethylphosphonium+, a lipophilic cation. The particulate fraction was separated from the cytosolic compartment first by permeabilization using digitonin, followed by rapid centrifugal sedimentation through a bromododecane layer. We found that the mitochondrial membrane potential (161 ± 7 mV, negative inside) was relatively well maintained under oxidant stress, i.e., the potential was decreased only at high concentrations of HOCl and H2O2 and gradually with time. The membrane potential of isolated rat heart mitochondria was affected similarly by H2O2 and HOCl in a concentration- and time-dependent manner. High concentrations of oxidants also reduced the cellular ATP level but did not significantly change the matrix volume. When the extra-mitochondrial free calcium concentration was increased in permeabilized myocytes, the transmembrane potential was decreased proportionally, and this decrease was potentiated further by H2O2. These results support the view that heart mitochondria are equipped with well-developed defense mechanisms against oxidants, but the action of H2O2 on the transmembrane electrical gradient is exacerbated by an increase in cytosolic calcium. Keywords: ATP, calcium, cardiomyocyte, cell defense, mitochondrial membrane potential, oxidant, triphenylmethylphosphonium.


2000 ◽  
Vol 78 (5) ◽  
pp. 378-391 ◽  
Author(s):  
G V Obrocea ◽  
M E Morris

Ion-selective microelectrode recordings were made to assess a possible contribution of extracellular γ-aminobutyric acid (GABA) accumulation to early responses evoked in the brain by anoxia and ischemia. Changes evoked by GABA or N2 in [K+]o, [Cl-]o, [Na+]o, and [TMA+]o were recorded in the cell body and dendritic regions of the stratum pyramidale (SP) and stratum radiatum (SR), respectively, of pyramidal neurons in CA1 of guinea pig hippocampal slices. Bath application of GABA (1-10 mM) for approximately 5 min evoked changes in [K+]o and [Cl-]o with respective EC50 levels of 3.8 and 4.1 mM in SP, and 4.7 and 5.6 mM in SR. In SP 5 mM GABA reversibly increased [K+]o and [Cl-]o and decreased [Na+]o; replacement of 95% O2 -5% CO2 by 95% N2 -5% CO2 for a similar period of time evoked changes which were for each ion in the same direction as those with GABA. In SR both GABA and N2 caused increases in [K+]o and decreases in [Cl-]o and [Na+]o. The reduction of extracellular space, estimated from levels of [TMA+]o during exposures to GABA and N2, was 5-6% and insufficient to cause the observed changes in ion concentration. Ion changes induced by GABA and N2 were reversibly attenuated by the GABAA receptor antagonist bicuculline methiodide (BMI, 100 µM). GABA-evoked changes in [K+]o in SP and SR and [Cl-]o in SP were depressed by >=90%, and of [Cl-]o in SR by 50%; N2-evoked changes in [K+]o in SP and SR were decreased by 70% and those of [Cl-]o by 50%. BMI blocked Δ [Na+]o with both GABA and N2 by 20-30%. It is concluded that during early anoxia: (i) accumulation of GABA and activation of GABAA receptors may contribute to the ion changes and play a significant role, and (ii) responses in the dendritic (SR) regions are greater than and (or) differ from those in the somal (SP) layers. A large component of the [K+]o increase may involve a GABA-evoked Ca2+-activated gk, secondary to [Ca2+]i increase. A major part of [Cl-]o changes may arise from GABA-induced gCl and glial efflux, with strong stimulation of active outward transport and anion exchange at SP, and inward Na+/K+/2Cl- co-transport at SR. Na+ influx is attributable mainly to Na+-dependent transmitter uptake, with only a small amount related to GABAA receptor activation. Although the release and (or) accumulation of GABA during anoxia might be viewed as potentially protectant, the ultimate role may more likely be an important contribution to toxicity and delayed neuronal death. Key words: brain slices, ion-selective microelectrodes, stratum pyramidale, stratum radiatum, bicuculline methiodide, extracellular space shrinkage.


1997 ◽  
Vol 237 ◽  
pp. S48-S49
Author(s):  
J. Sonn ◽  
R. Kadusi ◽  
A. Kraut ◽  
A. Mayevsky

1994 ◽  
Vol 26 (1-2) ◽  
pp. 135-142 ◽  
Author(s):  
Kazuki Yabuuchi ◽  
Masabumi Minami ◽  
Seishi Katsumata ◽  
Akira Yamazaki ◽  
Masamichi Satoh

Sign in / Sign up

Export Citation Format

Share Document